Comparison theorems for the third-order delay trinomial differential equations. (English) Zbl 1208.34109

The objective of this paper is to study asymptotic properties of the third-order delay trinomial differential equation
\[ y'''(t)+p(t)y'(t)+g(t)y(\tau(t))=0. \]
Employing new comparison theorems, we can deduce the oscillatory and asymptotic behavior of the above-mentioned equation from the oscillation of a couple of the first-order differential equations. Obtained comparison principles essentially simplify the examination of the studied equations.


34K11 Oscillation theory of functional-differential equations


Full Text: DOI


[1] doi:10.1016/j.mcm.2010.02.011 · Zbl 1201.34097
[3] doi:10.1016/0362-546X(94)00239-E · Zbl 0840.34076
[5] doi:10.1016/j.na.2009.01.070 · Zbl 1173.34348
[11] doi:10.2969/jmsj/03330509 · Zbl 0494.34049
[13] doi:10.1016/S0362-546X(97)00600-7 · Zbl 0935.34063
[15] doi:10.1007/BF01223686 · Zbl 0463.34050
[16] doi:10.1016/j.amc.2010.01.001 · Zbl 1195.34098
[17] doi:10.1016/j.na.2007.05.012 · Zbl 1147.34026
[19] doi:10.1016/j.jmaa.2006.01.001 · Zbl 1110.34048
[20] doi:10.1216/RMJ-2008-38-2-649 · Zbl 1167.34028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.