Existence of homoclinic solutions for a class of nonlinear difference equations. (English) Zbl 1208.39003

The authors consider the nonlinear difference equation
\[ \Delta(p(n)(\Delta u(n-1))^\delta)-q(n)(x(n))^\delta=f(n,u(n)),\quad n\in\mathbb{Z}, \]
where \(\Delta\) is the usual forward difference operator, \(\delta\) is the ratio of odd positive integers, \(p,q\) are real sequences with \(p(n)\neq 0\), and \(f:\mathbb{Z}\times\mathbb{Z}\to\mathbb{R}\). They are interested in obtaining conditions guaranteeing the existence of a nontrivial homoclinic solution. Another of the main purposes is to develop a new approach to this problem by using critical point theory. Various types of sufficient existence conditions are obtained. In particular, the conditions on the nonlinear term are rather relaxed, and so generalize some existing results in the literature; the expression \(\int_0^x f(n,s)ds\) satisfies a kind of new superquadratic condition.
Reviewer: Pavel Rehak (Brno)


39A10 Additive difference equations
39A12 Discrete version of topics in analysis
37C29 Homoclinic and heteroclinic orbits for dynamical systems
Full Text: DOI EuDML


[1] Guo Z, Yu J: Existence of periodic and subharmonic solutions for second-order superlinear difference equations.Science in China A 2003,46(4):506-515. · Zbl 1215.39001 · doi:10.1007/BF02884022
[2] Guo Z, Yu J: Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems.Nonlinear Analysis: Theory, Methods & Applications 2003,55(7-8):969-983. 10.1016/j.na.2003.07.019 · Zbl 1053.39011 · doi:10.1016/j.na.2003.07.019
[3] Guo Z, Yu J: The existence of periodic and subharmonic solutions of subquadratic second order difference equations.Journal of the London Mathematical Society. Second Series 2003,68(2):419-430. 10.1112/S0024610703004563 · Zbl 1046.39005 · doi:10.1112/S0024610703004563
[4] Castro A, Shivaji R: Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric.Communications in Partial Differential Equations 1989,14(8-9):1091-1100. 10.1080/03605308908820645 · Zbl 0688.35025 · doi:10.1080/03605308908820645
[5] Esteban JR, Vázquez JL: On the equation of turbulent filtration in one-dimensional porous media.Nonlinear Analysis: Theory, Methods & Applications 1986,10(11):1303-1325. 10.1016/0362-546X(86)90068-4 · Zbl 0613.76102 · doi:10.1016/0362-546X(86)90068-4
[6] Kaper HG, Knaap M, Kwong MK: Existence theorems for second order boundary value problems.Differential and Integral Equations 1991,4(3):543-554. · Zbl 0732.34019
[7] Agarwal RP, Stanek S: Existence of positive solutions to singular semi-positone boundary value problems.Nonlinear Analysis: Theory, Methods & Applications 2002,51(5):821-842. 10.1016/S0362-546X(01)00864-1 · Zbl 1018.34023 · doi:10.1016/S0362-546X(01)00864-1
[8] Cecchi M, Marini M, Villari G: On the monotonicity property for a certain class of second order differential equations.Journal of Differential Equations 1989,82(1):15-27. 10.1016/0022-0396(89)90165-4 · Zbl 0694.34035 · doi:10.1016/0022-0396(89)90165-4
[9] Li W-T: Oscillation of certain second-order nonlinear differential equations.Journal of Mathematical Analysis and Applications 1998,217(1):1-14. 10.1006/jmaa.1997.5680 · Zbl 0893.34023 · doi:10.1006/jmaa.1997.5680
[10] Marini M: On nonoscillatory solutions of a second-order nonlinear differential equation.Unione Matematica Italiana. Bollettino. C. Serie VI 1984,3(1):189-202. · Zbl 0574.34022
[11] Cai X, Yu J: Existence theorems for second-order discrete boundary value problems.Journal of Mathematical Analysis and Applications 2006,320(2):649-661. 10.1016/j.jmaa.2005.07.029 · Zbl 1113.39019 · doi:10.1016/j.jmaa.2005.07.029
[12] Ma M, Guo Z: Homoclinic orbits and subharmonics for nonlinear second order difference equations.Nonlinear Analysis: Theory, Methods & Applications 2007,67(6):1737-1745. 10.1016/j.na.2006.08.014 · Zbl 1120.39007 · doi:10.1016/j.na.2006.08.014
[13] Ma M, Guo Z: Homoclinic orbits for second order self-adjoint difference equations.Journal of Mathematical Analysis and Applications 2006,323(1):513-521. 10.1016/j.jmaa.2005.10.049 · Zbl 1107.39022 · doi:10.1016/j.jmaa.2005.10.049
[14] Lin X, Tang XH: Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems.Journal of Mathematical Analysis and Applications 2011,373(1):59-72. 10.1016/j.jmaa.2010.06.008 · Zbl 1208.39008 · doi:10.1016/j.jmaa.2010.06.008
[15] Rabinowitz PH: Minimax Metods in Critical Point Theory with Applications in Differential Equations, CBMS Regional Conference Series, no. 65. American Mathematical Society, Providence, RI, USA; 1986. · Zbl 0609.58002 · doi:10.1090/cbms/065
[16] Zhang Z, Yuan R: Homoclinic solutions of some second order non-autonomous systems.Nonlinear Analysis: Theory, Methods & Applications 2009,71(11):5790-5798. 10.1016/j.na.2009.05.003 · Zbl 1203.34068 · doi:10.1016/j.na.2009.05.003
[17] Izydorek M, Janczewska J: Homoclinic solutions for a class of the second order Hamiltonian systems.Journal of Differential Equations 2005,219(2):375-389. 10.1016/j.jde.2005.06.029 · Zbl 1080.37067 · doi:10.1016/j.jde.2005.06.029
[18] Mawhin J, Willem M: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences. Volume 74. Springer, New York, NY, USA; 1989:xiv+277. · Zbl 0676.58017 · doi:10.1007/978-1-4757-2061-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.