On a class of retarded integro-differential equations with nonlocal initial conditions. (English) Zbl 1208.45004

The paper deals with the local existence and uniqueness of a mild solution for the Cauchy problem formed by a fractional integro-differential equation with time-delay and a nonlocal initial condition: \[ u'(t) - \int_0^t \frac{(t-s)^{\mu -2}}{\Gamma(\mu -1)} Au(s)ds = F(t,u(t),u(\kappa(t))),\quad t\geq 0; \]
\[ u(t) + H_t(u) = \phi(t),\quad-\tau \leq t \leq 0. \] Here, \(1< \mu < 2\), \(\tau >0\), \(A: D(A) \subset X \rightarrow X\) is a generator of a solution operator on a complex Banach space \(X\), \(\kappa: [0,\,\infty) \rightarrow [-\tau,\,\infty)\) is a function representing the delay, \(H_t: [-\tau,\,0] \times{\mathcal C}([-\tau,\,0],\,X)\rightarrow X\) is an operator. The convolution integral in the equation is of the Riemann-Liouville fractional integral type. The existence of a global solution is also proven here. An illustrative example is presented at the end of the paper.


45J05 Integro-ordinary differential equations
26A33 Fractional derivatives and integrals
45G10 Other nonlinear integral equations
Full Text: DOI


[1] Cuevas, C.; de Souza, Julio César, \(S\)-asymptotically \(\omega\)-periodic solutions of semilinear fractional integro-differential equations, Appl. math. lett., 22, 865-870, (2009) · Zbl 1176.47035
[2] Cuevas, C.; de Souza, Julio César, Existence of \(S\)-asymptotically \(\omega\)-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear anal., 72, 1683-1689, (2010) · Zbl 1197.47063
[3] E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001.
[4] Podlubny, I.; Petras˘, I.; Vinagre, B.M.; O’Leary, P.; Dorc˘ak, L., Analogue realizations of fractional-order controllers: fractional order calculus and its applications, Nonlinear dynam., 29, 281-296, (2002) · Zbl 1041.93022
[5] Anh, V.V.; Leonenko, N.N., Spectral analysis of fractional kinetic equations with randomdata, J. stat. phys., 104, 1349-1387, (2001) · Zbl 1034.82044
[6] Anh, V.V.; Mcvinish, R., Fractional differential equations driven by levy noise, J. appl. stoch. anal., 16, 2, 97-119, (2003) · Zbl 1042.60034
[7] Miller, K.S.; Ross, B., An introduction to the fractional calculus and differential equations, (1993), John Wiley New York · Zbl 0789.26002
[8] Agarwal, R.P.; de Andrade, B.; Cuevas, C., On type of periodicity and ergodicity to a class of fractional order differential equations, Adv. differential equations, 2010, 25 pages, (2010), Article ID 179750 · Zbl 1194.34007
[9] R.P. Agarwal, B. de Andrade, C. Cuevas, Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Anal. RWA, in press (doi:10.1016/j.nonrwa.2010.01.002).
[10] Agarwal, R.P.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving riemann – liouville fractional derivative, Adv. difference equ., 2009, 47 pages, (2009), Article ID 981728 · Zbl 1182.34103
[11] Agarwal, R.P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta appl. math., 109, 973-1033, (2010) · Zbl 1198.26004
[12] Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear anal., 72, 2859-2862, (2010) · Zbl 1188.34005
[13] Cuevas, C.; Lizama, C., Almost automorphic solutions to a class of semilinear fractional differential equations, Appl. math. lett., 21, 1315-1319, (2008) · Zbl 1192.34006
[14] Cuevas, C.; Rabelo, M.; Soto, H., Pseudo almost automorphic solutions to a class of semilinear fractional differential equations, Commun. appl. nonlinear anal., 17, 33-48, (2010)
[15] Lakshmikantham, V., Theory of fractional differential equations, Nonlinear anal., 69, 10, 3337-3343, (2008) · Zbl 1162.34344
[16] Lakshmikantham, V.; Vatsala, A., Basic theory of fractional differential equations, Nonlinear anal., 69, 8, 2677-2682, (2008) · Zbl 1161.34001
[17] Podlubny, I., Fractional differential equations, (1999), San Diego Academic Press · Zbl 0918.34010
[18] Hilfer, H., Applications of fractional calculus in physics, (2000), World Scientific Publ. Co. Singapore · Zbl 0998.26002
[19] Henriquez, H.R., Approximation of abstract functional differential equations with unbounded delay, Indian J. pure appl. math., 27, 4, 357-386, (1996) · Zbl 0853.34072
[20] Hino, Y.; Murakami, S.; Naito, T., ()
[21] Byszewski, L., Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. math. anal. appl., 162, 494-505, (1991) · Zbl 0748.34040
[22] Balachandran, K.; Park, J.Y., Sobolev type integrodifferential equation with nonlocal condition in Banach spaces, Taiwanese J. math., 7, 155-163, (2003) · Zbl 1032.45013
[23] N’Guérékata, G.M., Existence and uniqueness of an integral solution to some Cauchy problem with nonlocal conditions, (), 843-849 · Zbl 1147.35329
[24] N’Guérékata, G.M., A Cauchy problem for some fractional abstract differential equation with nonlocal conditions, Nonlinear anal., 70, 1873-1876, (2009) · Zbl 1166.34320
[25] Liang, J.; Xiao, T.J., Semilinear integrodifferential equations with nonlocal initial conditions, Comput. math. appl., 47, 863-875, (2004) · Zbl 1068.45014
[26] Mophou, G.M.; N’Guérékata, G.M., Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup forum, 79, 315-322, (2009) · Zbl 1180.34006
[27] Deng, K., Exponential decay of solutions of semilinear parabolic equations with non-local initial conditions, J. math. anal. appl., 179, 630-637, (1993) · Zbl 0798.35076
[28] Henriquez, H.R.; Hernandez, E.; Akca, H., Global solutions for an abstract Cauchy problem with nonlocal conditions, Internat. J. math. manuscripts, 1, (2007)
[29] Liang, J.; Liu, J.H.; Xiao, T.J., Nonlocal Cauchy problems governed by compact operator families, Nonlinear anal., 57, 183-189, (2004) · Zbl 1083.34045
[30] Dubey, Shruti A.; Bahuguna, Dhirendra, Existence and regularity of solutions to nonlocal retarded differential equations, Appl. math. comput., 215, 2413-2424, (2009) · Zbl 1193.34162
[31] Henriquez, H.R.; Pierri, M.; Goncalves, G., Existence results for an impulsive abstract partial differential equation with state-dependent delay, Comput. math. appl., 52, 411-420, (2006) · Zbl 1153.35396
[32] Kolmanovskii, V.; Myshkis, A., Introduction to the theory and applications of functional differential equations, (1999), Kluwer Academic Dordrecht · Zbl 0917.34001
[33] Byszewski, L.; Akca, H., On a mild solution of a semilinear functional-differential evolution nonlocal problem, J. appl. math. stoch. anal., 10, 265-271, (1997) · Zbl 1043.34504
[34] Cuesta, E., Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete contin. dyn. syst., 277-285, (2007) · Zbl 1163.45306
[35] Lizama, C., Regularized solutions for abstract Volterra equations, J. math. anal. appl., 243, 278-292, (2000) · Zbl 0952.45005
[36] Engel, K.J.; Nagel, R., One parameter semigroups for linear evolution equations, (1995), Springer-Verlag
[37] Agarwal, S.; Bahuguna, D., Existence of solutions to Sobolev-type partial neutral differential equations, J. appl. math. stoch. anal., 2006, (2006), Article ID 16308 · Zbl 1119.34060
[38] Sadovskii, B.N., On a fixed point principle, Funct. anal. appl., 1, 74-76, (1967) · Zbl 0165.49102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.