zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a class of retarded integro-differential equations with nonlocal initial conditions. (English) Zbl 1208.45004
The paper deals with the local existence and uniqueness of a mild solution for the Cauchy problem formed by a fractional integro-differential equation with time-delay and a nonlocal initial condition: $$u'(t) - \int_0^t \frac{(t-s)^{\mu -2}}{\Gamma(\mu -1)} Au(s)ds = F(t,u(t),u(\kappa(t))),\quad t\geq 0;$$ $$ u(t) + H_t(u) = \phi(t),\quad-\tau \le t \le 0. $$ Here, $1< \mu < 2$, $\tau >0$, $A: D(A) \subset X \rightarrow X$ is a generator of a solution operator on a complex Banach space $X$, $\kappa: [0,\,\infty) \rightarrow [-\tau,\,\infty)$ is a function representing the delay, $H_t: [-\tau,\,0] \times{\mathcal C}([-\tau,\,0],\,X)\rightarrow X$ is an operator. The convolution integral in the equation is of the Riemann-Liouville fractional integral type. The existence of a global solution is also proven here. An illustrative example is presented at the end of the paper.

45J05Integro-ordinary differential equations
26A33Fractional derivatives and integrals (real functions)
45G10Nonsingular nonlinear integral equations
Full Text: DOI
[1] Cuevas, C.; De Souza, Julio César: S-asymptotically ${\omega}$-periodic solutions of semilinear fractional integro-differential equations, Appl. math. Lett. 22, 865-870 (2009) · Zbl 1176.47035 · doi:10.1016/j.aml.2008.07.013
[2] Cuevas, C.; De Souza, Julio César: Existence of S-asymptotically ${\omega}$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear anal. 72, 1683-1689 (2010) · Zbl 1197.47063 · doi:10.1016/j.na.2009.09.007
[3] E. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001. · Zbl 0989.34002
[4] Podlubny, I.; Petras?, I.; Vinagre, B. M.; O’leary, P.; Dorc?ak, L.: Analogue realizations of fractional-order controllers: fractional order calculus and its applications, Nonlinear dynam. 29, 281-296 (2002) · Zbl 1041.93022 · doi:10.1023/A:1016556604320
[5] Anh, V. V.; Leonenko, N. N.: Spectral analysis of fractional kinetic equations with randomdata, J. stat. Phys. 104, 1349-1387 (2001) · Zbl 1034.82044 · doi:10.1023/A:1010474332598
[6] Anh, V. V.; Mcvinish, R.: Fractional differential equations driven by Lévy noise, J. appl. Stoch. anal. 16, No. 2, 97-119 (2003) · Zbl 1042.60034 · doi:10.1155/S1048953303000078
[7] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and differential equations, (1993) · Zbl 0789.26002
[8] Agarwal, R. P.; De Andrade, B.; Cuevas, C.: On type of periodicity and ergodicity to a class of fractional order differential equations, Adv. differential equations 2010, 25 pages (2010) · Zbl 1194.34007 · doi:10.1155/2010/179750
[9] R.P. Agarwal, B. de Andrade, C. Cuevas, Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Anal. RWA, in press (doi:10.1016/j.nonrwa.2010.01.002).
[10] Agarwal, R. P.; Belmekki, M.; Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann--Liouville fractional derivative, Adv. difference equ. 2009, 47 pages (2009) · Zbl 1182.34103 · doi:10.1155/2009/981728
[11] Agarwal, R. P.; Benchohra, M.; Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta appl. Math. 109, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[12] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J.: On the concept of solution for fractional differential equations with uncertainty, Nonlinear anal. 72, 2859-2862 (2010) · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[13] Cuevas, C.; Lizama, C.: Almost automorphic solutions to a class of semilinear fractional differential equations, Appl. math. Lett. 21, 1315-1319 (2008) · Zbl 1192.34006 · doi:10.1016/j.aml.2008.02.001
[14] Cuevas, C.; Rabelo, M.; Soto, H.: Pseudo almost automorphic solutions to a class of semilinear fractional differential equations, Commun. appl. Nonlinear anal. 17, 33-48 (2010) · Zbl 1208.47080
[15] Lakshmikantham, V.: Theory of fractional differential equations, Nonlinear anal. 69, No. 10, 3337-3343 (2008) · Zbl 1162.34344 · doi:10.1016/j.na.2007.09.025
[16] Lakshmikantham, V.; Vatsala, A.: Basic theory of fractional differential equations, Nonlinear anal. 69, No. 8, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[17] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[18] Hilfer, H.: Applications of fractional calculus in physics, (2000) · Zbl 0998.26002
[19] Henriquez, H. R.: Approximation of abstract functional differential equations with unbounded delay, Indian J. Pure appl. Math. 27, No. 4, 357-386 (1996) · Zbl 0853.34072
[20] Hino, Y.; Murakami, S.; Naito, T.: Functional-differential equations with infinite delay, Lectures notes in mathematics 1473 (2002) · Zbl 1005.34070
[21] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. math. Anal. appl. 162, 494-505 (1991) · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[22] Balachandran, K.; Park, J. Y.: Sobolev type integrodifferential equation with nonlocal condition in Banach spaces, Taiwanese J. Math. 7, 155-163 (2003) · Zbl 1032.45013
[23] N’guérékata, G. M.: Existence and uniqueness of an integral solution to some Cauchy problem with nonlocal conditions, , 843-849 (2006) · Zbl 1147.35329
[24] N’guérékata, G. M.: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions, Nonlinear anal. 70, 1873-1876 (2009) · Zbl 1166.34320 · doi:10.1016/j.na.2008.02.087
[25] Liang, J.; Xiao, T. J.: Semilinear integrodifferential equations with nonlocal initial conditions, Comput. math. Appl. 47, 863-875 (2004) · Zbl 1068.45014 · doi:10.1016/S0898-1221(04)90071-5
[26] Mophou, G. M.; N’guérékata, G. M.: Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup forum 79, 315-322 (2009) · Zbl 1180.34006 · doi:10.1007/s00233-008-9117-x
[27] Deng, K.: Exponential decay of solutions of semilinear parabolic equations with non-local initial conditions, J. math. Anal. appl. 179, 630-637 (1993) · Zbl 0798.35076 · doi:10.1006/jmaa.1993.1373
[28] Henriquez, H. R.; Hernandez, E.; Akca, H.: Global solutions for an abstract Cauchy problem with nonlocal conditions, Internat. J. Math. manuscripts 1 (2007)
[29] Liang, J.; Liu, J. H.; Xiao, T. J.: Nonlocal Cauchy problems governed by compact operator families, Nonlinear anal. 57, 183-189 (2004) · Zbl 1083.34045 · doi:10.1016/j.na.2004.02.007
[30] Dubey, Shruti A.; Bahuguna, Dhirendra: Existence and regularity of solutions to nonlocal retarded differential equations, Appl. math. Comput. 215, 2413-2424 (2009) · Zbl 1193.34162 · doi:10.1016/j.amc.2009.08.036
[31] Henriquez, H. R.; Pierri, M.; Goncalves, G.: Existence results for an impulsive abstract partial differential equation with state-dependent delay, Comput. math. Appl. 52, 411-420 (2006) · Zbl 1153.35396 · doi:10.1016/j.camwa.2006.03.022
[32] Kolmanovskii, V.; Myshkis, A.: Introduction to the theory and applications of functional differential equations, (1999) · Zbl 0917.34001
[33] Byszewski, L.; Akca, H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem, J. appl. Math. stoch. Anal. 10, 265-271 (1997) · Zbl 1043.34504 · doi:10.1155/S1048953397000336
[34] Cuesta, E.: Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete contin. Dyn. syst., 277-285 (2007) · Zbl 1163.45306 · http://www.aimsciences.org/journals/redirecting.jsp?paperID=2810
[35] Lizama, C.: Regularized solutions for abstract Volterra equations, J. math. Anal. appl. 243, 278-292 (2000) · Zbl 0952.45005 · doi:10.1006/jmaa.1999.6668
[36] Engel, K. J.; Nagel, R.: One parameter semigroups for linear evolution equations, (1995) · Zbl 0952.47036
[37] Agarwal, S.; Bahuguna, D.: Existence of solutions to Sobolev-type partial neutral differential equations, J. appl. Math. stoch. Anal. 2006 (2006) · Zbl 1119.34060
[38] Sadovskii, B. N.: On a fixed point principle, Funct. anal. Appl. 1, 74-76 (1967) · Zbl 0165.49102