zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hybrid proximal-type and hybrid shrinking projection algorithms for equilibrium problems, maximal monotone operators, and relatively nonexpansive mappings. (English) Zbl 1208.49036
Summary: We introduce two hybrid proximal-type algorithms and two hybrid shrinking projection algorithms by using the hybrid proximal-type method and the hybrid shrinking projection method, respectively, for finding a common element of the set of solutions of an equilibrium problem, the set of fixed points of a relatively nonexpansive mapping, and the set of solutions to the equation $0 \in Tx$ for a maximal monotone operator $T$ defined on a uniformly smooth and uniformly convex Banach space. The strong convergence of the sequences generated by the proposed algorithms is established. Our results improve and generalize several known results in the literature.

49M30Other numerical methods in calculus of variations
49J40Variational methods including variational inequalities
47J20Inequalities involving nonlinear operators
47H05Monotone operators (with respect to duality) and generalizations
65K10Optimization techniques (numerical methods)
Full Text: DOI