×

zbMATH — the first resource for mathematics

Random attractors for stochastic lattice dynamical systems in weighted spaces. (English) Zbl 1208.60063
Summary: We first provide some sufficient conditions for the existence of global compact random attractors for general random dynamical systems in weighted space \(l_{\rho}^p (p \geqslant 1)\) of infinite sequences. Then we consider the existence of global compact random attractors in weighted space \(l_{\rho}^2\) for stochastic lattice dynamical systems with random coupled coefficients and multiplicative/additive white noises. Our results recover many existing ones on the existence of global random attractors for stochastic lattice dynamical systems with multiplicative/additive white noises in regular \(l^{2}\) space of infinite sequences.

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R.A.; Fournier, J.J., Sobolev spaces, (2003), Elsevier Ltd. · Zbl 1098.46001
[2] Arnold, L., Random dynamical systems, (1998), Springer-Verlag Berlin
[3] Bates, P.W.; Lisei, H.; Lu, K., Attractors for stochastic lattice dynamical systems, Stoch. dyn., 6, 1-21, (2006) · Zbl 1105.60041
[4] Bates, P.W.; Lu, K.; Wang, B., Attractors for lattice dynamical systems, Internat. J. bifur. chaos, 11, 143-153, (2001) · Zbl 1091.37515
[5] Beyn, W.-J.; Pilyugin, S.Yu., Attractors of reaction diffusion systems on infinite lattices, J. dynam. differential equations, 15, 485-515, (2003) · Zbl 1041.37040
[6] Caraballo, T.; Lu, K., Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. math. China, (2008) · Zbl 1155.60324
[7] Chate, H.; Courbage, M., Lattice systems, Phys. D, 103, 1-612, (1997)
[8] Chow, S.N., Lattice dynamical systems, (), 1-102 · Zbl 1046.37051
[9] Chow, S.N.; Paret, J.M., Pattern formation and spatial chaos in lattice dynamical systems, IEEE trans. circuits syst., 42, 746-751, (1995)
[10] Chow, S.N.; Paret, J.M.; Shen, W., Traveling waves in lattice dynamical systems, J. differential equations, 149, 248-291, (1998) · Zbl 0911.34050
[11] Chueshov, I., Monotone random systems theory and applications, (2002), Springer-Verlag Berlin, Heidelberg · Zbl 1023.37030
[12] Crauel, H.; Flandoli, F., Attractors for random dynamical systems, Probab. related fields, 100, 365-393, (1994) · Zbl 0819.58023
[13] Crauel, H., Random point attractors versus random set attractors, J. lond. math. soc., 63, 413-427, (2002) · Zbl 1011.37032
[14] Crauel, H.; Debussche, A.; Flandoli, F., Random attractors, J. dynam. differential equations, 9, 307-341, (1997) · Zbl 0884.58064
[15] Huang, J., The random attractor of stochastic Fitzhugh-Nagumo equations in an infinite lattice with white noise, Phys. D, 233, 83-94, (2007) · Zbl 1126.37048
[16] Imkeller, P.; Schmalfuss, B., The conjugacy of stochastic and random differential equations and the existence of global attractors, J. dynam. differential equations, 13, 215-249, (2001) · Zbl 1004.37034
[17] Jia, Q.; Zhou, S.; Yin, F., Kolmogorov entropy of global attractor for dissipative lattice dynamical systems, J. math. phys., 44, 5804-5810, (2003) · Zbl 1063.34045
[18] Karachalios, N.I.; Yannacopoulos, A.N., Global existence and compact attractors for the discrete nonlinear Schrödinger equation, J. differential equations, 217, 88-123, (2005) · Zbl 1084.35092
[19] Langa, J.A.; Robinson, J.C., Fractal dimension of a random invariant set, J. math. pures appl., 85, 269-294, (2006) · Zbl 1134.37364
[20] Langa, J.A., Finite-dimensional limiting dynamics of random dynamical systems, Dyn. syst., 18, 57-68, (2003) · Zbl 1038.37041
[21] Lv, Y.; Sun, J.H., Dynamical behavior for stochastic lattice systems, Chaos solitons fractals, 27, 1080-1090, (2006) · Zbl 1134.37350
[22] Lv, Y.; Wang, W., Limiting dynamics for stochastic wave equations, J. differential equations, 244, 1-23, (2008) · Zbl 1127.37042
[23] Li, X.J.; Wang, D.B., Attractors for partly dissipative lattice dynamic systems in weighted spaces, J. math. anal. appl., 325, 141-156, (2007) · Zbl 1104.37047
[24] Da Prato, G.; Zabczyk, J., Stochastic equations in infinite dimensions, (1992), Cambridge University Press Cambridge · Zbl 0761.60052
[25] Pazy, A., Semigroups of linear operators and applications to partial differential equations, (2007), Springer-Verlag New York · Zbl 0516.47023
[26] Robinson, J.C., Infinite-dimensional dynamical systems, (2001), Cambridge University Press Cambridge · Zbl 1026.37500
[27] Robinson, J.C., Stability of random attractors under perturbation and approximation, J. differential equations, 186, 652-669, (2002) · Zbl 1020.37033
[28] Ruelle, D., Characteristic exponents for a viscous fluid subjected to time dependent forces, Comm. math. phys., 93, 285-300, (1984) · Zbl 0565.76031
[29] Shen, W., Lifted lattices, hyperbolic structure, and topological disorder in coupled map lattices, SIAM J. appl. math., 56, 1379-1399, (1996) · Zbl 0868.58059
[30] Vleck, E.V.; Wang, B., Attractors for lattice Fitzhugh-Nagumo systems, Phys. D, 212, 317-336, (2005) · Zbl 1086.34047
[31] Wang, B., Dynamics of systems on infinite lattices, J. differential equations, 221, 224-245, (2006) · Zbl 1085.37056
[32] Wang, B., Asymptotic behavior of non-autonomous lattice systems, J. math. anal. appl., 331, 121-136, (2007) · Zbl 1112.37076
[33] Wang, X.; Li, S.; Xu, D., Random attractors for second-order stochastic lattice dynamical systems, Nonlinear anal., 72, 483-494, (2010) · Zbl 1181.60103
[34] Zhao, C.; Zhou, S., Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete contin. dyn. syst., 21, 643-663, (2008) · Zbl 1153.37037
[35] Zhao, C.; Zhou, S., Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. math. anal. appl., 354, 78-95, (2009) · Zbl 1192.37106
[36] Zhao, X.; Zhou, S., Kernel sections for processes and nonautonomous lattice systems, Discrete contin. dyn. syst. ser. B, 9, 763-785, (2008) · Zbl 1149.37040
[37] Zhou, S., Attractors for second order lattice dynamical systems, J. differential equations, 179, 605-624, (2002) · Zbl 1002.37040
[38] Zhou, S., Attractors for first order dissipative lattice dynamical systems, Phys. D, 178, 51-61, (2003) · Zbl 1011.37047
[39] Zhou, S.; Shi, W., Attractors and dimension of dissipative lattice systems, J. differential equations, 224, 172-204, (2006) · Zbl 1091.37023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.