×

On the origin of the inertial force and gravitation. (English) Zbl 1208.83089

Summary: In this paper we study the state of the art of the inertia theory, the gravity and the cosmology constant and their current open problems.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amendola, L., Ganouji, R., Polarski, D., Tsujikawa, S.: Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D 75, 083504 (2007) · Zbl 1228.83115
[2] Arp, A., et al.: In: Edwards, M.R. (ed.) Pushing Gravity, New Perspectives on Le Sage’s Theory of Gravitation. Apeiron, Montreal (2002)
[3] Assis, A.K.T.: On Mach’s principle. Found. Phys. Lett. 2, 301–318 (1989) · doi:10.1007/BF00690297
[4] Assis, A.K.T.: Relational Mechanics. Apeiron, Montreal (1999)
[5] Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124(3), 925–935 (1961) · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[6] Cook, R.J.: Is gravitation a result of Mach’s inertial interaction? Nuovo Cimento B 35, 25–34 (1976) · doi:10.1007/BF02726280
[7] Davis, T.M., Linewater, C.H.: Expanding confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe. Publ. Astron. Soc. Aust. 21, 97–109 (2004) · doi:10.1071/AS03040
[8] Dicke, R.H.: Experimental tests of Mach’s principle. Phys. Rev. Lett. 7, 359–360 (1961) · Zbl 0103.44705 · doi:10.1103/PhysRevLett.7.359
[9] Dyson, F.W., Eddington, A.S., Davidson, C.: A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of 29 May 1919. Philos. Trans. R. Soc. Lond. A 220, 291–333 (1920) · doi:10.1098/rsta.1920.0009
[10] Einstein, A.: Zur Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies). Ann. Phys. 17, 891–921 (1905) · doi:10.1002/andp.19053221004
[11] Einstein, A.: Die Grundlage der allgemeinen Relativitäetstheorie (The foundation of the general theory of relativity). Ann. Phys. 49, 769–822 (1916) · doi:10.1002/andp.19163540702
[12] Einstein, A.: Cosmological considerations on the general theory of relativity. In: Einstein, A., Lorentz, H.A., Weyl, H., Minkowski, H. (eds.) The Principle of Relativity, pp. 175–188. Dover, New York (1952)
[13] El Naschie, M.S.: Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics. Chaos Solitons Fractals 37(3), 662–668 (2008) · doi:10.1016/j.chaos.2008.01.018
[14] Famaey, B., Binney, J.: Modified Newtonian dynamics in the Milky Way. Mon. Not. R. Astron. Soc. 363, 603–608 (2005)
[15] Felten, J.E.: Milgrom’s revision of Newton’s laws: dynamical and cosmological consequences. Astrophys. J. 286, 3–6 (1984) · doi:10.1086/162569
[16] Foucault, L.: Démostration physique du mouvement de rotation de la terre au moyen du pendule. C. R. Acad. Sci. Paris 3, 135–138 (1851)
[17] Foucault, L.: Physical demonstration of the rotation of the earth by means of the pendulum. J. Franklin Inst. 21, 350–353 (1851) · doi:10.1016/0016-0032(51)90993-3
[18] Ghosh, A.: Origin of Inertia. Apeiron, Montreal (2000)
[19] Giné, J.: On the origin of the inertia: the Modified Newtonian Dynamics theory. Chaos Solitons Fractals 41, 1651–1660 (2009) · Zbl 1198.70006 · doi:10.1016/j.chaos.2008.07.008
[20] Giné, J.: Is gravitational quantization another consequence of general relativity? Chaos Solitons Fractals 42, 1893–1899 (2009) · doi:10.1016/j.chaos.2009.03.102
[21] Giné, J.: Modified Newtonian Dynamics (MOND) and the deceleration parameter. Preprint, Universitat de Lleida (2009)
[22] Harrison, E.R.: Darkness at Night: A Riddle of the Universe. Harvard University Press, Cambridge (1987)
[23] Iorio, L.: Long-range models of modified gravity and their agreement with solar system and double pulsar data. Proc. Sci. ISFTG 18, 1–17 (2009)
[24] Lense, J., Thirring, H.: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156–163 (1918)
[25] Mach, E.: Die Mechanik in ihrer Entwicklung Historisch–Kritisch dargestell. Leipzig (1883)
[26] Mashhoon, B.: Gravitoelectromagnetism: a brief review. In: Iorio, L. (ed.) The Measurement of Gravitomagnetism: A Challenging Enterprise, pp. 31–42. NOVA Science, New York (2005). gr-qc/0311030
[27] Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983) · doi:10.1086/161130
[28] Nottale, L.: L’univers et la Lumiere. Flammarion, Paris (1994)
[29] Nordtvedt, K.: Existence of the gravitomagnetic interaction. Int. J. Theor. Phys. 27, 1395–1404 (1988) · Zbl 0662.70020 · doi:10.1007/BF00671317
[30] Pessa, E.: On Sakharov’s theory of gravitation. Gen. Relativ. Gravit. 9(10), 911–920 (1978) · doi:10.1007/BF00759650
[31] Raine, D.J.: Mach’s principle and space-time structure. Rep. Prog. Phys. 44, 1151–1195 (1981) · doi:10.1088/0034-4885/44/11/001
[32] Reinhardt, M.: Mach’s principle–a critical review. Z. Naturforsch. A 28, 529–537 (1973)
[33] Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040–1041 (1967)
[34] Sciama, D.W.: On the origin of the inertia. Mon. Not. R. Astron. Soc. 113, 34–42 (1953) · Zbl 0051.20005
[35] Treder, H.J.: Remarks on anisotropy of inertia in an anisotropic cosmos. Astron. Nachr. 313(2), 65–67 (1992) · doi:10.1002/asna.2113130202
[36] Verlinde, E.: On the origin of gravity and the laws of Newton. arXiv:1001.0785 · Zbl 1260.81284
[37] Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[38] Whitrow, G.J.: The mass of the Universe. Nature 158, 165–166 (1946) · doi:10.1038/158165b0
[39] Whitrow, G.J., Randall, D.G.: Expanding world–models characterized by a dimensionless invariant. Mon. Not. R. Astron. Soc. 111, 455–467 (1951) · Zbl 0044.45505
[40] Woodward, J.F.: Gravity, inertia, and quantum vacuum zero point fields. Found. Phys. 31, 819–835 (2001) · doi:10.1023/A:1017500513005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.