zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A general algorithm for solving generalized geometric programming with nonpositive degree of difficulty. (English) Zbl 1208.90163
Summary: A general algorithm for solving generalized geometric programming problems with nonpositive degree of difficulty is proposed. It shows that, under certain assumptions, the primal problem can be transformed and decomposed into several subproblems which are easy to solve, and furthermore, we verify that, through solving these subproblems, we can obtain the optimal value and solutions of the primal problem which are global solutions. At last, some examples are given to vindicate our conclusions.

MSC:
90C30Nonlinear programming
WorldCat.org
Full Text: DOI
References:
[1] Duffin, R.J., Peterson, E.L.: Duality theory for geometric programming. SIAM. J. Appl. Math. 14, 1307--1349 (1966) · Zbl 0203.21902 · doi:10.1137/0114105
[2] Duffin, R.J., Peterson, E.L., Zener, C.: In: Geometric Programming Theory and Applications [M], pp. 115--140. Wiley, New York (1967) · Zbl 0171.17601
[3] Duffin, R.J., Peterson, E.L.: Geometric programming with signomial. J. Optim. Theory Appl. 11(1), 3--35 (1973) · Zbl 0238.90069 · doi:10.1007/BF00934288
[4] Avriel, M., Williams, A.C.: An extension of geometric programming with applications in engineering optimization. J. Eng. Math. 5(3), 187--199 (1971) · doi:10.1007/BF01535411
[5] Nand, K.J.: Geometric programming based robot control design. Comput. Eng. 29(1--4), 631--635 (1995)
[6] Jefferson, T.R., Scott, C.H.: Generalized geometric programming applied to problems of optimal control: I. Theory. J. Optim. Theory Appl. 26(1), 117--129 (1978) · Zbl 0369.90120 · doi:10.1007/BF00933274
[7] Ecker, J.G.: Geometric programming: Methods, computations and applications. SIAM Rev. 22(3), 338--362 (1980) · Zbl 0438.90088 · doi:10.1137/1022058
[8] Kortanek, K.O., Xiaojie, X., Yinyu, Y.: An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76, 155--181 (1996) · Zbl 0881.90106
[9] Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4), 351--369 (1997) · doi:10.1016/S0098-1354(96)00282-7
[10] Wang, Y., Zhang, K., Gao, Y.: Global optimization of generalized geometric programming. Comput. Math. Appl. 48(10--11), 1505--1516 (2004) · Zbl 1066.90096 · doi:10.1016/j.camwa.2004.07.008
[11] Shushun, K.: Optimality conditions for generalized geometric programming. Math. Pract. Theory 14(2), 21--28 (1984) · Zbl 0574.90075
[12] Alejandre, J.L., Allueva, A., Gonzalez, J.M.: A general alternative procedure for solving negative degree of difficulty problems in geometric programming. Comput. Optim. Appl. 27, 83--93 (2004) · Zbl 1045.90062 · doi:10.1023/B:COAP.0000004981.17496.9c
[13] Sinha, S.B., Biswas, A., Biswal, M.P.: Geometric programming problems with negative degree of difficulty. Eur. J. Oper. Res. 28, 101--103 (1987) · Zbl 0677.90059 · doi:10.1016/0377-2217(87)90175-5
[14] Bricker, D.L., Choi, J.C., Rajpopal, J.: On geometric programming problems having negative degrees of difficulty. Eur. J. Oper. Res. 68, 427--430 (1993) · Zbl 0784.90064 · doi:10.1016/0377-2217(93)90199-W
[15] Islam, S., Roy, T.K.: Modified geometric programming problem and its applications. J. Appl. Math. Comput. 17(1--2), 121--144 (2005) · Zbl 1138.90321 · doi:10.1007/BF02936045
[16] Charles, B., Phillips, D.T.: In: Applied Geometric Programming [M], pp. 860--956. Wiley, New York (1976)