Wu, Ligang; Su, Xiaojie; Shi, Peng Mixed \(\mathcal H_2/\mathcal H_{\infty}\) approach to fault detection of discrete linear repetitive processes. (English) Zbl 1208.94032 J. Franklin Inst. 348, No. 2, 393-414 (2011). Summary: Linear repetitive processes (LRPs) are a distinct class of two-dimensional (2-D) systems, which have extensive applications in the practical industry, such as, long-wall coal cutting and metal rolling operations. This paper is concerned with the problem of mixed \(\mathcal H_2/\mathcal H_{\infty}\) filter design for discrete LRPs with its application to fault detection. Our attention is focused on the design of a fault-detection filter for generating a residual signal which can be processed to decide whether or not a fault has occurred in the process. A sufficient condition of the mixed \(\mathcal H_2/\mathcal H_{\infty}\) performance for the fault-detection process is proposed. The solvability condition for a desired fault-detection filter is also established, and the corresponding fault-detection filter design is cast into a convex optimization problem which can be efficiently handled by using the standard softwares. A numerical example is given to demonstrate the effectiveness of the proposed design procedures. Cited in 24 Documents MSC: 94A13 Detection theory in information and communication theory 93E10 Estimation and detection in stochastic control theory 93B36 \(H^\infty\)-control 93C95 Application models in control theory PDF BibTeX XML Cite \textit{L. Wu} et al., J. Franklin Inst. 348, No. 2, 393--414 (2011; Zbl 1208.94032) Full Text: DOI References: [1] Bai, L.; Tian, Z.; Shi, S., Robust fault detection for a class of nonlinear time-delay systems, J. Franklin Inst., 344, 6, 873-888 (2007) · Zbl 1117.93371 [2] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory (1994), SIAM: SIAM Philadelphia, PA · Zbl 0816.93004 [3] de Souza, C. E.; Xie, L.; Coutinho, D. F., Robust filtering for 2-D discrete-time linear systems with convex-bounded parameter uncertainty, Automatica, 46, 4, 673-681 (2010) · Zbl 1193.93178 [4] Ding, Q.; Zhong, M., On designing \(H_\infty\) fault detection filter for Markovian jump linear systems with polytopic uncertainties, Int. J. Innovative Comput. Inf. Control, 6, 3(A), 995-1004 (2010) [5] Du, C.; Xie, L., Linear \(H_\infty\) Control and Filtering of Two-dimensional Systems (2002), Springer-Verlag: Springer-Verlag Berlin [6] Galkowski, K.; Paszke, W.; Rogers, E.; Xu, S.; Lam, J.; Owens, D. H., Stability and control of differential linear repetitive processes using an LMI setting, IEEE Trans. Circuits Syst. (II), 50, 662-666 (2003) [7] Galkowski, K.; Rogers, E.; Xu, S.; Lam, J.; Owens, D. H., LMIs—a fundamental tool in analysis and controller design for discrete linear repetitive processes, IEEE Trans. Circuits Syst. (I), 49, 768-778 (2002) · Zbl 1368.93518 [8] Gao, H.; Lam, J.; Xie, L.; Wang, C., New approach to mixed \(H_2 / H_\infty\) filtering for polytopic discrete time systems, IEEE Trans. Signal Process., 53, 3183-3192 (2005) · Zbl 1370.93274 [9] Gao, Z.; Ho, D. W.C., State/noise estimator for descriptor systems with application to sensor fault diagnosis, IEEE Trans. Signal Process., 54, 4, 1316-1326 (2006) · Zbl 1373.94594 [10] Geromel, J. C.; De Oliveira, M. C., \(H_2\) and \(H_\infty\) robust filtering for convex bounded uncertain systems, IEEE Trans. Autom. Control, 46, 100-107 (2001) · Zbl 1056.93628 [11] Gu, Z.; Wang, D.; Yue, D., Fault detection for continuous-time networked control systems with non-ideal QoS, Int. J. Innovative Comput. Inf. Control, 6, 8, 3631-3640 (2010) [12] Henry, D.; Zolghadri, A., Design of fault diagnosis filters: a multi-objective approach, J. Franklin Inst., 342, 4, 421-446 (2005) · Zbl 1146.93377 [13] Jiang, B.; Chowdhury, F. N., Parameter fault detection and estimation of a class of nonlinear systems using observers, J. Franklin Inst., 342, 7, 725-736 (2005) · Zbl 1079.93011 [14] Karimi, H. R.; Zapateiro, M.; Luo, N., A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations, J. Franklin Inst., 347, 6, 957-973 (2010) · Zbl 1201.93033 [15] Lu, W. S.; Antoniou, A., Two-dimensional Digital Filters (1992), Marcel Dekker: Marcel Dekker New York · Zbl 0852.93001 [16] Nguang, S. K.; Shi, P.; Ding, S., Delay dependent fault estimation for uncertain time delay nonlinear systems: an LMI approach, Int. J. Robust Nonlinear Control, 16, 913-933 (2006) · Zbl 1135.93022 [17] Palhares, R. M.; Peres, P. L.D., LMI approach to the mixed \(H_2 / H_\infty\) filtering design for discrete-time systems, IEEE Trans. Aerosp. Electron. Syst., 37, 292-296 (2001) [19] Paszke, W.; Galkowski, K.; Rogers, E.; Owens, D. H., Guaranteed cost control of uncertain differential linear repetitive processes, IEEE Trans. Circuits Syst. (II), 51, 629-634 (2004) [21] Rogers, E.; Owens, D. H., Stability Analysis for Linear Repetitive Processes, (Lecture Notes in Control and Information Sciences, vol. 175 (1992), Springer: Springer Berlin, Germany) · Zbl 0772.93072 [22] Tuan, H.; Apkarian, P.; Nguyen, Q.; Narikiyo, T., Robust mixed \(H_2 / H_\infty\) filtering of 2-D systems, IEEE Trans. Signal Process., 50, 1759-1771 (2002) [23] Wang, Z.; Huang, B., Robust \(H_2/H_\infty\) filtering for linear systems with error variance constraints, IEEE Trans. Signal Process., 48, 2463-2467 (2000) · Zbl 1003.93051 [24] Wang, Z.; Unbehauen, H., Robust \(H_2 / H_\infty\) state estimation for systems with error variance constraints: the continuous-time case, IEEE Trans. Autom. Control, 44, 1061-1065 (1999) · Zbl 0955.93052 [25] Wang, Y.; Wang, W.; Wang, D., LMI approach to design fault detection filter for discrete-time switched systems with state delays, Int. J. Innovative Comput. Inf. Control, 6, 1, 387-398 (2010) [26] Wu, L.; Ho, D. W.C., Fuzzy filter design for nonlinear Itô stochastic systems with application to sensor fault detection, IEEE Trans. Fuzzy Syst., 17, 233-242 (2009) [27] Wu, L.; Lam, J.; Paszke, W.; Galkowski, K.; Rogers, E., Robust \(H_\infty\) filtering for uncertain differential linear repetitive processes, Int. J. Adapt. Control Signal Process., 22, 243-265 (2008) · Zbl 1284.93237 [28] Wu, L.; Lam, J.; Paszke, W.; Galkowski, K.; Rogers, E.; Kummert, A., Control and filtering for discrete linear repetitive processes with \(H_\infty\) and \(\ell_2 - \ell_\infty\) performances, Multidimensional Syst. Signal Process., 20, 235-264 (2009) · Zbl 1169.93016 [29] Wu, L.; Shi, P.; Gao, H.; Wang, C., \(H_\infty\) filtering for 2D Markovian jump systems, Automatica, 44, 1849-1858 (2008) · Zbl 1149.93346 [30] Xu, S.; Lam, J.; Zou, Y.; Lin, Z.; Paszke, W., Robust \(H_\infty\) filtering for uncertain 2-D continuous systems, IEEE Trans. Signal Process., 53, 1731-1738 (2005) · Zbl 1370.93292 [31] Xu, H.; Zou, Y.; Lu, J.; Xu, S., Robust \(H_\infty\) control for a class of uncertain nonlinear two-dimensional systems with state delays, J. Franklin Inst., 342, 7, 877-891 (2005) · Zbl 1092.93015 [32] Zhong, M.; Ding, S. X.; Lam, J.; Wang, H., LMI approach to design robust fault detection filter for uncertain LTI systems, Automatica, 39, 543-550 (2003) · Zbl 1036.93061 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.