Moduli of log mixed Hodge structures. (English) Zbl 1209.14008

This short paper announces the construction of toroidal partial compactifications for moduli spaces of graded-polarized mixed Hodge structures. As in the pure case [Classifying spaces of degenerating polarized Hodge structures. Ann. Math. Stud. 169. Princeton, NJ: Princeton University Press (2009; Zbl 1172.14002)], the idea is to add points corresponding to certain mixed nilpotent orbits, and to describe the resulting space using log geometry.
The main result is that for a neat subgroup \(\Gamma \subseteq G_{\mathbb{Z}}\), the space \(\Gamma \backslash D_{\Sigma}\) is a log manifold and Hausdorff. Moreover, it is a fine moduli space for log mixed Hodge structures with polarized graded quotients. One interesting application is the following analyticity result: given a collection of period maps \(f_j : S^{\ast} \to \Gamma \backslash D\) on the complement \(S^{\ast}\) of a smooth divisor in a complex manifold \(S\), the set of points where \(f_1(s) = \dotsb = f_n(s)\) has an analytic closure in \(S\). In the special case of admissible normal functions, this gives a new proof for a theorem by P. Brosnan and G. Pearlstein [Duke Math. J. 150, No. 1, 77–100 (2009; Zbl 1187.14015)].


14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14D07 Variation of Hodge structures (algebro-geometric aspects)
32G20 Period matrices, variation of Hodge structure; degenerations
Full Text: DOI arXiv


[1] A. Borel, Introduction aux groupes arithmétiques , Hermann, Paris, 1969. · Zbl 0186.33202
[2] P. Brosnan and G. J. Pearlstein, Zero loci of admissible normal functions with torsion singularities, arXiv: · Zbl 1187.14015 · doi:10.1215/00127094-2009-047
[3] P. Brosnan and G. J. Pearlstein, On the algebraicity of the zero locus of an admissible normal function, arXiv: · Zbl 1293.32019 · doi:10.4007/annals.2009.170.883
[4] E. Cattani, A. Kaplan and W. Schmid, Degeneration of Hodge structures, Ann. of Math. (2) 123 (1986), no. 3, 457-535. · Zbl 0617.14005 · doi:10.2307/1971333
[5] P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. No. 52 (1980), 137-252. · Zbl 0456.14014 · doi:10.1007/BF02684780
[6] P. A. Griffiths, Periods of integrals on algebraic manifolds, I. Construction and properties of the modular varieties, Amer. J. Math. 90 (1968), 568-626. · Zbl 0169.52303 · doi:10.2307/2373545
[7] M. Kashiwara, A study of variation of mixed Hodge structure, Publ. Res. Inst. Math. Sci. 22 (1986), no. 5, 991-1024. · Zbl 0621.14007 · doi:10.2977/prims/1195177264
[8] K. Kato, Logarithmic structures of Fontaine-Illusie, in Algebraic analysis, geometry, and number theory (J.-I. Igusa, ed.) , (Baltimore, MD, 1988) , Johns Hopkins Univ. Press, Baltimore, (1989), 191-224. · Zbl 0776.14004
[9] K. Kato and C. Nakayama, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over \(\mathbf{C}\), Kodai Math. J. 22 (1999), no. 2, 161-186. · Zbl 0957.14015 · doi:10.2996/kmj/1138044041
[10] K. Kato, C. Nakayama and S. Usui, \(\mathop{\mathrm{SL}}(2)\)-orbit theorem for degeneration of mixed Hodge structure, J. Algebraic Geom. 17 (2008), no. 3, 401-479. · Zbl 1144.14005 · doi:10.1090/S1056-3911-07-00486-9
[11] K. Kato, C. Nakayama and S. Usui, Log intermediate Jacobians, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), 73-78. · Zbl 1200.14024 · doi:10.3792/pjaa.86.73
[12] K. Kato, C. Nakayama and S. Usui, Classifying spaces of degenerating mixed Hodge structures, II: Spaces of \(\mathop{\mathrm{SL}}(2)\)-orbits. (Preprint). · Zbl 1233.14007 · doi:10.1215/0023608X-2010-023
[13] K. Kato, C. Nakayama and S. Usui, Classifying spaces of degenerating mixed Hodge structures, III: Spaces of nilpotent orbits. (in preparation). · Zbl 1298.14017
[14] K. Kato and S. Usui, Classifying spaces of degenerating polarized Hodge structures , Ann. of Math. Stud., 169, Princeton Univ. Press, Princeton, NJ, 2009. · Zbl 1172.14002
[15] M. Saito, Hausdorff property of the Néron models of Green, Griffiths and Kerr, arXiv: · Zbl 0372.47009
[16] C. Schnell, Complex analytic Néron models for arbitrary families of intermediate Jacobians, arXiv: · Zbl 1299.14009 · doi:10.1007/s00222-011-0341-8
[17] J. H. M. Steenbrink and S. Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489-542. · Zbl 0626.14007 · doi:10.1007/BF01388729
[18] S. Usui, Variation of mixed Hodge structure arising from family of logarithmic deformations II: Classifying space, Duke Math. J. 51 (1984), no. 4, 851-875. · Zbl 0558.14005 · doi:10.1215/S0012-7094-84-05137-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.