zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation of third-order nonlinear differential equations. (English) Zbl 1209.34042
Summary: The objective of this work is to study oscillatory and asymptotic properties of the third-order nonlinear delay differential equation $$[a(t)[x^{\prime \prime }(t)]^\gamma ]^{\prime} + q(t)f(x[\tau (t)])=0. \tag{E}$$ Applying suitable comparison theorems, we present new criteria for oscillation or certain asymptotic behaviors of nonoscillatory solutions of (E). The results obtained essentially improve and complement earlier ones.

MSC:
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
WorldCat.org
Full Text: DOI
References:
[1] Philos, Ch.G.: On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delay, Arch. math. 36, 168-178 (1981) · Zbl 0463.34050 · doi:10.1007/BF01223686
[2] Grace, S. R.; Agarwal, R. P.; Pavani, R.; Thandapani, E.: On the oscillation of certain third order nonlinear functional differential equations, Appl. math. Comput. 202, 102-112 (2008) · Zbl 1154.34368 · doi:10.1016/j.amc.2008.01.025
[3] Ladde, G. S.; Lakshmikantham, V.; Zhang, B. G.: Oscillation theory of differential equations with deviating arguments, (1987) · Zbl 0622.34071
[4] Agarwal, R. P.; Shien, S. L.; Yeh, C. C.: Oscillation criteria for second order retarded differential equations, Math. comput. Modelling 26, No. 4, 1-11 (1997) · Zbl 0902.34061 · doi:10.1016/S0895-7177(97)00141-6
[5] Baculíková, B.; Džurina, J.: Oscillation of third-order neutral differential equations, Math. comput. Modelling 52, 215-226 (2010) · Zbl 1201.34097 · doi:10.1016/j.mcm.2010.02.011
[6] Baculíková, B.; Elabbasy, E. M.; Saker, S. H.; Džurina, J.: Oscillation criteria for third order nonlinear differential equations, Math. slovaca 58, 201-220 (2008) · Zbl 1174.34052 · doi:10.2478/s12175-008-0068-1
[7] Džurina, J.: Asymptotic properties of third order delay differential equations, Czechoslovak math. J. 45, No. 120, 443-448 (1995) · Zbl 0842.34073
[8] Erbe, L. H.; Kong, Q.; Zhang, B. G.: Oscillation theory for functional differential equations, (1994) · Zbl 0821.34067
[9] Hassan, T. S.: Oscillation of third order delay dynamic equation on time scales, Math. comput. Modelling 49, 1573-1586 (2009) · Zbl 1175.34086 · doi:10.1016/j.mcm.2008.12.011
[10] Tiryaki, A.; Aktas, M. F.: Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. math. Anal. appl. 325, 54-68 (2007) · Zbl 1110.34048 · doi:10.1016/j.jmaa.2006.01.001