×

The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor. (English) Zbl 1209.34060

Summary: A fractional 3-dimensional (3-D) 4-wing quadratic autonomous system (Qi system) is analyzed. The time domain approximation method (Grunwald-Letnikov method) and the frequency domain approximation method are used together to analyze the behavior of this fractional order chaotic system.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34A08 Fractional ordinary differential equations
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006) · Zbl 1092.45003
[2] Isabel, S.J., Tenreiro, Machado J.A.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008) · Zbl 1210.80008 · doi:10.1007/s11071-007-9322-2
[3] Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastic structures. J. Guid. Control Dyn. 14, 304–311 (1991) · doi:10.2514/3.20641
[4] Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984) · Zbl 0544.73052 · doi:10.1115/1.3167616
[5] Koeller, R.C.: Polynomial operators. Stieltjes convolution and fractional calculus in hereditary mechanics. Acta Mech. 58, 251–264 (1986) · Zbl 0578.73040 · doi:10.1007/BF01176603
[6] Skaar, S.B., Michel, A.N., Miller, R.K.: Stability of viscoelastic control systems. IEEE Trans. Autom. Control 33, 348 (1988) · Zbl 0641.93051 · doi:10.1109/9.192189
[7] Sun, H.H., Abdelwahad, A.A., Onaval, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984) · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[8] Laskin, N.: Fractional market dynamics. Physica A 287, 482–492 (2000) · doi:10.1016/S0378-4371(00)00387-3
[9] Scalas, E., Gorenflo, R., Marinardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376–384 (2000) · doi:10.1016/S0378-4371(00)00255-7
[10] Kutner, R.: Stock market context of the Lévy walks with varying velocity. Physica A 314, 786–795 (2000) · Zbl 1001.91031 · doi:10.1016/S0378-4371(02)01058-0
[11] Jensen, M.H., Johansen, A., Simonsen, I.: Inverse statistics in economics: the gain–loss asymmetry. Physica A 324, 338–343 (2003) · Zbl 1072.91619 · doi:10.1016/S0378-4371(02)01884-8
[12] Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999) · doi:10.1103/PhysRevLett.82.1136
[13] Wiggin, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)
[14] Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE CAS-I 42, 485–490 (1995) · doi:10.1109/81.404062
[15] Ahmad, W., El-Khazali, R., El-Wakil, A.: Fractional-order Wien-bridge oscillator. Electron. Lett. 37, 1110–1112 (2001) · doi:10.1049/el:20010756
[16] Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–349 (2003) · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[17] Petráš, I.: Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dyn. 57, 157–170 (2009) · Zbl 1176.34050 · doi:10.1007/s11071-008-9429-0
[18] Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Bifurcation and chaos in noninteger order cellular neural networks. Int. J. Bifur. Chaos 7, 1527–1539 (1998) · Zbl 0936.92006 · doi:10.1142/S0218127498001170
[19] Arena, P., Fortuna, L., Porto, D.: Chaotic behavior in noninteger-order cellular neural networks. Phys. Rev. E 61, 776–781 (2000) · doi:10.1103/PhysRevE.61.776
[20] Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003) · Zbl 1234.49040 · doi:10.1103/PhysRevLett.91.034101
[21] Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55 (2004) · doi:10.1016/j.physa.2004.04.113
[22] Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37, 1465–1470 (1992) · Zbl 0825.58027 · doi:10.1109/9.159595
[23] Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Detecting Lyapunov exponents from a time series. Physica D 16, 285–317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[24] Qi, G.Y., Chen, G.R., van Wyk, M.A., van Wyk, B.J., Zhang, Y.H.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Solitons Fractals 38, 705–721 (2008) · Zbl 1146.37332 · doi:10.1016/j.chaos.2007.01.029
[25] Julien, C.S.: Chaos and Time-series Analysis. Oxford Unversity Press, New York (2003) · Zbl 1012.37001
[26] Chua, L.O., Komuro, M., Matsumoto: The double scroll family. IEEE Trans. Circuits Syst. 33, 1072–1118 (1986) · Zbl 0634.58015 · doi:10.1109/TCS.1986.1085869
[27] Silva, C.P.: Shil’nikov’s theorem–a tutorial. IEEE Trans. Circuits Syst. I 40, 675–682 (1993) · Zbl 0850.93352 · doi:10.1109/81.246142
[28] Lü, J., Chen, G., Yu, X., Leung, H.: Design and analysis of multi-scroll chaotic attractors from saturated function series. IEEE Trans. Circuits Syst. I 51, 2476–2490 (2004) · Zbl 1371.37060 · doi:10.1109/TCSI.2004.838151
[29] Podlubny, I.: Fractional differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[30] Tavazoei, M.S., Haeri, M.: Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Anal. 69, 1299–1320 (2008) · Zbl 1148.65094 · doi:10.1016/j.na.2007.06.030
[31] Tavazoei, M.S., Haeri, M.: Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems. IET Signal Proc. 1, 171–181 (2007) · doi:10.1049/iet-spr:20070053
[32] Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367, 102–113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[33] Deng, W.: Short memory principle and a predictor-corrector approach for fractional differentional equations J. Comput. Appl. Math. 206, 174–188 (2007) · Zbl 1121.65128 · doi:10.1016/j.cam.2006.06.008
[34] Deng, W.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007) · Zbl 1388.35095 · doi:10.1016/j.jcp.2007.09.015
[35] Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional order predator–prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[36] Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, Lille, France, IMACS, IEEE-SMC, 2, pp. 963–968 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.