zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Function projective synchronization for fractional-order chaotic systems. (English) Zbl 1209.34065
Summary: This letter investigates the function projective synchronization between fractional-order chaotic systems. Based on the stability theory of fractional-order systems and tracking control, a controller for the synchronization of two fractional-order chaotic systems is designed. This technique is applied to achieve synchronization between fractional-order Lorenz systems of different orders, and achieve synchronization between the fractional-order Lorenz system and the fractional-order Chen system. Numerical simulations demonstrate the validity and feasibility of the proposed method.

34A08Fractional differential equations
34H05ODE in connection with control problems
34C28Complex behavior, chaotic systems (ODE)
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019
[2] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[3] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications, (1998) · Zbl 0908.93005
[4] Carroll, T. L.; Pecora, L. M.: Synchronizing chaotic circuits, IEEE trans. Circuits syst. I 38, 453-456 (1991) · Zbl 1058.37538
[5] Kacarev, L.; Parlitz, U.: General approach for chaotic synchronization with application to communication, Phys. rev. Lett. 74, 5028-5031 (1996)
[6] Du, H. Y.; Zeng, Q. S.; Wang, C. H.; Ling, M. X.: Function projective synchronization in coupled chaotic systems, Nonlinear anal. RWA 11, 705-712 (2010) · Zbl 1181.37039 · doi:10.1016/j.nonrwa.2009.01.016
[7] Sebastian, K. S.; Sabir, M.: Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters, Phys. lett. A 373, 3743-3748 (2009) · Zbl 1233.93060 · doi:10.1016/j.physleta.2009.08.027
[8] Wang, X. Y.; Song, J. M.: Adaptive full state hybrid projective synchronization in the unified chaotic system, Modern phys. Lett. B 23, 1913-1921 (2009) · Zbl 1168.37313 · doi:10.1142/S0217984909020102
[9] Luo, R. Z.: Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters, Phys. lett. A 372, 3667-3671 (2008) · Zbl 1220.37025 · doi:10.1016/j.physleta.2008.02.035
[10] Mainieri, R.; Rehacek, J.: Projective synchronization in the three-dimensional chaotic systems, Phys. rev. Lett. 82, 3042-3045 (1999)
[11] Chen, Y.; Li, X.: Function projective synchronization between two identical chaotic systems, Internat. J. Modern phys. C 18, No. 5, 883-888 (2007) · Zbl 1139.37301 · doi:10.1142/S0129183107010607
[12] Chen, Y.; An, H. L.; Li, Z. B.: The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems, Appl. math. Comput. 197, 96-110 (2008) · Zbl 1136.93410 · doi:10.1016/j.amc.2007.07.036
[13] An, H. L.; Chen, Y.: The function cascade synchronization method and applications, Commun. nonlinear sci. Numer. simul. 13, 2246-2255 (2008) · Zbl 1221.93124 · doi:10.1016/j.cnsns.2007.05.029
[14] Matignon, D.: Stability results of fractional differential equations with applications to control processing, (1996)
[15] Lorenz, E. N.: Deterministic nonperodic flow, J. atmospheric sci. 20, 130-141 (1963)
[16] Grigorenko, I.; Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system, Phys. rev. Lett. 91, No. 3, 034101 (2003) · Zbl 1234.49040
[17] Chen, G.; Ueta, T.: Yet anthor chaotic attractor, Internat. J. Bifur. chaos 9, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[18] Mohammad, S. T.; Mohammad, H.: A necessary condition for double scroll attractor existence in fractional-order systems, Phys. lett. A 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081