Li, Tongxing; Han, Zhenlai; Zhao, Ping; Sun, Shurong Oscillation of even-order neutral delay differential equations. (English) Zbl 1209.34082 Adv. Difference Equ. 2010, Article ID 184180, 9 p. (2010). By employing the Riccati transformation technique, the authors establish some new oscillation criteria for even order neutral delay differential equations. An illustrative example is given. Reviewer: Qiru Wang (Guangzhou) Cited in 25 Documents MSC: 34K11 Oscillation theory of functional-differential equations 34K40 Neutral functional-differential equations Keywords:neutral delay differential equations; even order; Riccati transformation technique PDF BibTeX XML Cite \textit{T. Li} et al., Adv. Difference Equ. 2010, Article ID 184180, 9 p. (2010; Zbl 1209.34082) Full Text: DOI EuDML References: [1] Hale J: Theory of Functional Differential Equations, Applied Mathematical Sciences, vol. 3. 2nd edition. Springer, New York, NY, USA; 1977:x+365. [2] Džurina J, Stavroulakis IP: Oscillation criteria for second-order delay differential equations.Applied Mathematics and Computation 2003,140(2-3):445-453. 10.1016/S0096-3003(02)00243-6 · Zbl 1043.34071 [3] Grace SR: Oscillation theorems for nonlinear differential equations of second order.Journal of Mathematical Analysis and Applications 1992,171(1):220-241. 10.1016/0022-247X(92)90386-R · Zbl 0767.34017 [4] Koplatadze R: On oscillatory properties of solutions of functional differential equations.Memoirs on Differential Equations and Mathematical Physics 1994, 3: 1-180. [5] Philos ChG: A new criterion for the oscillatory and asymptotic behavior of delay differential equations.Bulletin de l’Académie Polonaise des Science, Série des Sciences Mathématiques 1981, 39: 61-64. [6] Sun YG, Meng FW: Note on the paper of J. Džurina and I. P. Stavroulakis.Applied Mathematics and Computation 2006,174(2):1634-1641. 10.1016/j.amc.2005.07.008 · Zbl 1096.34048 [7] Agarwal RP, Grace SR: Oscillation theorems for certain neutral functional-differential equations.Computers & Mathematics with Applications 1999,38(11-12):1-11. 10.1016/S0898-1221(99)00280-1 · Zbl 0981.34059 [8] Han Z, Li T, Sun S, Sun Y: Remarks on the paper [Appl. Math. Comput. 207 (2009) 388-396].Applied Mathematics and Computation 2010,215(11):3998-4007. 10.1016/j.amc.2009.12.006 · Zbl 1188.34086 [9] Han, Z.; Li, T.; Sun, S.; Chen, W., On the oscillation of second order neutral delay differential equations, No. 2010, 8 (2010) · Zbl 1192.34074 [10] Grammatikopoulos MK, Ladas G, Meimaridou A: Oscillations of second order neutral delay differential equations.Radovi Matematički 1985,1(2):267-274. · Zbl 0581.34051 [11] Karpuz B, Manojlović JV, Öcalan Ö, Shoukaku Y: Oscillation criteria for a class of second-order neutral delay differential equations.Applied Mathematics and Computation 2009,210(2):303-312. 10.1016/j.amc.2008.12.075 · Zbl 1188.34087 [12] Lin X, Tang XH: Oscillation of solutions of neutral differential equations with a superlinear neutral term.Applied Mathematics Letters 2007,20(9):1016-1022. 10.1016/j.aml.2006.11.006 · Zbl 1152.34364 [13] Liu L, Bai Y: New oscillation criteria for second-order nonlinear neutral delay differential equations.Journal of Computational and Applied Mathematics 2009,231(2):657-663. 10.1016/j.cam.2009.04.009 · Zbl 1175.34087 [14] Meng F, Xu R: Oscillation criteria for certain even order quasi-linear neutral differential equations with deviating arguments.Applied Mathematics and Computation 2007,190(1):458-464. 10.1016/j.amc.2007.01.040 · Zbl 1131.34319 [15] Rath RN, Misra N, Padhy LN: Oscillatory and asymptotic behaviour of a nonlinear second order neutral differential equation.Mathematica Slovaca 2007,57(2):157-170. 10.2478/s12175-007-0006-7 · Zbl 1150.34026 [16] Şahiner Y: On oscillation of second order neutral type delay differential equations.Applied Mathematics and Computation 2004,150(3):697-706. 10.1016/S0096-3003(03)00300-X · Zbl 1045.34038 [17] Xu R, Xia Y: A note on the oscillation of second-order nonlinear neutral functional differential equations.International Journal of Contemporary Mathematical Sciences 2008,3(29-32):1441-1450. · Zbl 1176.34078 [18] Xu R, Meng F: New Kamenev-type oscillation criteria for second order neutral nonlinear differential equations.Applied Mathematics and Computation 2007,188(2):1364-1370. 10.1016/j.amc.2006.11.004 · Zbl 1142.34360 [19] Xu R, Meng F: Oscillation criteria for second order quasi-linear neutral delay differential equations.Applied Mathematics and Computation 2007,192(1):216-222. 10.1016/j.amc.2007.01.108 · Zbl 1193.34137 [20] Xu Z, Liu X: Philos-type oscillation criteria for Emden-Fowler neutral delay differential equations.Journal of Computational and Applied Mathematics 2007,206(2):1116-1126. 10.1016/j.cam.2006.09.012 · Zbl 1122.34045 [21] Ye L, Xu Z: Oscillation criteria for second order quasilinear neutral delay differential equations.Applied Mathematics and Computation 2009,207(2):388-396. 10.1016/j.amc.2008.10.051 · Zbl 1168.34346 [22] Zafer A: Oscillation criteria for even order neutral differential equations.Applied Mathematics Letters 1998,11(3):21-25. 10.1016/S0893-9659(98)00028-7 · Zbl 0933.34075 [23] Zhang Q, Yan J, Gao L: Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients.Computers and Mathematics with Applications 2010,59(1):426-430. 10.1016/j.camwa.2009.06.027 · Zbl 1189.34135 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.