Qian, Wei; Li, Tao; Cong, Shen; Fei, Shumin Improved stability analysis on delayed neural networks with linear fractional uncertainties. (English) Zbl 1209.34087 Appl. Math. Comput. 217, No. 7, 3596-3606 (2010). Summary: The paper is concerned with the robust stability for generalized neural networks with both interval time-varying delay and time-varying distributed delay. Through partitioning the time-delay, choosing an augmented Lyapunov-Krasovskii functional, employing the free-weighting matrix method and convex combination, sufficient conditions are obtained to guarantee the robust stability of the concerned systems. Cited in 12 Documents MSC: 34K20 Stability theory of functional-differential equations 92B20 Neural networks for/in biological studies, artificial life and related topics 34K37 Functional-differential equations with fractional derivatives Keywords:delay-dependent; robust stability; generalized neural networks; time-varying interval delay; distributed delay; linear matrix inequality (LMI) PDF BibTeX XML Cite \textit{W. Qian} et al., Appl. Math. Comput. 217, No. 7, 3596--3606 (2010; Zbl 1209.34087) Full Text: DOI References: [1] Song, Q.; Cao, J., Robust stability in Cohen-Grossberg neural network with doth time-varying and distributed delays, Neural Process Lett., 27, 179-196 (2008) · Zbl 1396.34036 [2] Senan, S.; Arik, S., Global robust stability of bidirectional associative memory neural networks with multiple time delays, IEEE Trans. Syst. Man Cybern. B, 37, 1375-1381 (2007) [3] Zhang, X.; Han, Q., New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks, IEEE Trans. Neural Networks, 20, 533-539 (2009) [4] Syed, M.; Balasubramaniam, A. P., Stability analysis of uncertain fuzzy Hopfield neural networks with time delays, Commun. Nonlinear Sci. Numer. Simul., 14, 2776-2783 (2009) · Zbl 1221.34191 [5] Song, K.; Cao, J., Impulsive effects on stability of fuzzy Cohen-Grossberg neural networks with time-varying delays, IEEE Trans. Syst. Man Cybern. Part B, 37, 733-741 (2007) [6] Liu, R.; Wang, Z.; Liu, X., On global sability of delayed BAM stochastic neural networks with Markovian switching, Neural Process Lett., 30, 19-35 (2009) [7] Yucel, E.; Arik, S., Novel results for global robust stability of delayed neural networks, Chaos Soliton. Fract., 39, 1604-1614 (2009) · Zbl 1197.34148 [8] Ozcan, N.; Arik, S., A new sufficient condition for global robust stability of bidirectional associative memory neural networks with multiple time delays, Nonlinear Anal: RealWorld Appl., 10, 3312-3320 (2009) · Zbl 1162.92005 [9] Chen, W.; Zheng, W., Improved delay-dependent asymptotical stability criteria for delayed neural networks, IEEE Trans. Neural Networks-II, 19, 2154-2161 (2008) [10] Wu, M.; Liu, F.; Shi, P., Exponential stability analysis for neural networks with time-varying delay, IEEE Trans. Syst. Man Cybern. Part B, 38, 1152-1156 (2008) [11] Singh, V., Improved global robust stability for interval-delayed Hopfield neural networks, Neural Process Lett., 27, 257-265 (2008) [12] Yang, R.; Gao, H.; Shi, P., Novel robust stability criteria for stochastic Hopfield neural networks with time delays, IEEE Trans. Syst. Man Cybern. Part B, 39, 467-474 (2009) [13] Mou, S.; Gao, H.; Qiang, W., New delay-dependent exponential stability for neural networks with time delay, IEEE Trans. Syst. Man Cybern. Part B, 571-576 (2008) [14] Kwon, O. M.; Park, J. H.; Lee, S. M., On robust stability for uncertain neural networks with interval time-varying delays, IET Control Theor. Appl., 2, 625-634 (2008) [15] Kwon, O. M.; Park, J. H., Exponential stability analysis for uncertain neural networks with interval time-varying delays, Appl. Math. Comput., 212, 530-541 (2009) · Zbl 1179.34080 [16] Hou, Y.; Liao, T.; Lien, C.; Yan, J., Stability analysis of neural networks with interval time-varying delays, Chaos Solition. Fract., 17, 103-120 (2007) [17] He, Y.; Liu, G.; Rees, D.; Wu, M., Stability analysis for neural networks with time-varying interval delay, IEEE Trans. Neural Networks, 18, 1850-1854 (2007) [18] Hu, L.; Gao, H.; Zheng, W., Novel stability of cellular neural networks with interval time-varying delay, Neural Networks, 21, 1458-1463 (2008) · Zbl 1254.34102 [19] Rakkiyappan, R.; Balasubramaniam, P.; Lakshmanan, S., Robust stability results for uncertain stochastic neural networks with discrete interval and distributed time-varying delays, Phys. Lett. A, 273, 5290-5298 (2008) · Zbl 1223.92001 [20] Song, R.; Wang, Z., Neural networks with discrete and distributed time-varying delays: A general stability analysis, Chaos Soliton. Fract., 37, 1538-1547 (2008) · Zbl 1142.34380 [21] Rakkiyappan, R.; Balasubramaniam, P., Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays, Nonlinear Anal: Hybrid Syst., 3, 207-214 (2009) · Zbl 1184.93093 [22] Rakkiyappan, R.; Balasubramaniam, P., Delay-dependent robust stability analysis of uncertain stochastic neural networks with discrete interval and distributed time-varying delays, Neurocomputing, 72, 3231-3237 (2009) · Zbl 1184.93093 [23] Gao, M.; Cui, B., Global robust stability of neural networks with multiple discrete delays and distributed delays, Chaos Soliton. Fract., 40, 1823-1834 (2009) · Zbl 1198.93159 [24] Wang, Z.; Shu H, H.; Liu, R., Robust stability analysis of generalized neural networks with discrete and distributed time delays, Chaos Soliton. Fract., 30, 886-896 (2006) · Zbl 1142.93401 [25] Wang, Z.; Liu, D.; Zhang, H., Global asymptotic stability and robust stability of a class of Cohen-Grossberg neural networks with mixed delays, IEEE Trans. Circ. Syst-I., 56, 616-629 (2009) · Zbl 1468.93149 [26] Li, T.; Fei, S., Stability analysis of Cohen-Grossberg neural networks with time-varying and distributed delays, Neurocomputing, 71, 1069-1081 (2008) [27] Wang, Z.; Zhang, H.; Yu, W., Robust stability of Cohen-Grossberg neural networks via state transmission matrix, IEEE Trans. Neural Networks., 20, 169-174 (2009) [28] Yue, D.; Tian, E.; Zhang, Y.; Peng, C., Delay-distribution-dependent stability and stabilization of T-S fuzzy systems with probabilistic interval delay, IEEE Trans. Syst. Man Cybern. Part B, 39, 503-516 (2009) [29] Long, F.; Fei, S.; Fu, Z., \(H_∞\) control and quadratic stabilization of switched linear systems with linear fractional uncertainties via output feedback, Nonlinear Anal: Hybrid Syst., 2, 18-27 (2008) · Zbl 1157.93365 [30] Guo, Z.; Huang, L., LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations, Appl. Math. Comput., 215, 889-900 (2009) · Zbl 1187.34098 [31] Zhou, Q.; Wan, L., Global robust asymptotic stability analysis of BAM neural networks with time delay and impulse: An LMI approach, Appl. Math. Comput., 216, 1538-1545 (2010) · Zbl 1200.34088 [32] Park, J. H.; Kwon, O. M., Further results on state estimation for neural networks of neutral-type with time-varying delay, Appl. Math. Comput., 208, 69-75 (2009) · Zbl 1169.34334 [33] Park, J. H.; Kwon, O. M., On improved delay-dependent criterion for global stability of bidirectional associative memory neural networks with time-varying delays, Appl. Math. Comput., 199, 435-446 (2008) · Zbl 1149.34049 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.