zbMATH — the first resource for mathematics

A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces. (English) Zbl 1209.34095
The paper deals with the nonlinear integrodifferential impulsive equation with nonlocal conditions
\[ \begin{cases} x'(t)=Ax(t)+f\left(t,x(t),\int_0^tk(t,s,x(s))\,ds\right),\quad t\in J=[0,b],\;t\not=t_i,\\ x(0)=g(x)+x_0,\\ \Delta x(t_i)=I_i(x(t_i)),\quad i=1,2,\dots,p,\;0=t_0<t_1<\dots<t_p<t_{p+1}=b,\end{cases}\tag{P} \]
where \(A:D(A)\subset X\to X\) is the generator of a strongly continuous semigroup \(\{T(t),\;t\geq 0\}\) on a Banach space \(X\), \(f:J\times X\times X\to X\), \(k:J\times J\times X\to X\), \(g:PC(J,X)\to X\) and \(I_i:X\to X\), \(i=1,2,\dots, p\) are given functions which satisfy some suitable assumptions, \(\Delta x(t_i)=x(t_i^+)-x(t_i^-)\), \(x(t_i^+)=\lim_{h\to 0^+}x(t_i+h)\) and \(x(t_i^-)=\lim_{h\to 0^-}x(t_i+h)\) are respectively the right and left limits of \(x(t)\) at \(t=t_i\). By using a generalization of the Ascoli-Arzela theorem and some fixed point theorems such as Schaefer’s fixed point theorem and Krasnosel’skii’s fixed point theorem, the authors study the existence and uniqueness of \(PC\)-mild solutions for problem \((P)\).

34K30 Functional-differential equations in abstract spaces
45J05 Integro-ordinary differential equations
34K45 Functional-differential equations with impulses
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI
[1] Ahmed N.U.: Optimal impulsive control for impulsive systems in Banach space. Int. J. Differ. Equ. Appl. 1, 37–52 (2000) · Zbl 0959.49023
[2] Ahmed N.U.: Some remarks on the dynamics of impulsive systems in Banach space. Math. Anal. 8, 261–274 (2001) · Zbl 0995.34050
[3] Ahmed N.U., Teo K.L., Hou S.H.: Nonlinear impulsive systems on infinite dimensional spaces. Nonlinear Anal. 54, 907–925 (2003) · Zbl 1030.34056
[4] Ahmed N.U.: Existence of optimal controls for a general class of impulsive systems on Banach space. SIAM J. Control Optimal 42, 669–685 (2003) · Zbl 1037.49036
[5] Ahmed N.U.: Optimal feedback control for impulsive systems on the space of finitely additive measures. Publ. Math. Debrecen 70, 371–393 (2007) · Zbl 1164.34026
[6] Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Multiple solutions for impulsive semilinear functional and neutral functional differential equations in Hilbert space. J. Inequal. Appl. 2005, 189–205 (2005) · Zbl 1095.34046
[7] Byszewski L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991) · Zbl 0748.34040
[8] Byszewski L.: Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems. Dyn. Syst. Appl. 5, 595–605 (1996) · Zbl 0869.47034
[9] Byszewski L., Akca H.: Existence of solutions of a semilinear functional differential evolution nonlocal problem. Nonlinear Anal. 34, 65–72 (1998) · Zbl 0934.34068
[10] Byszewski L., Akca H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stoch. Anal. 10, 265–271 (1997) · Zbl 1043.34504
[11] Balachandran K., Park D.G., Kwun Y.C.: Nonlinear integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces. Commun. Korean Math. Soc. 14, 223–231 (1999) · Zbl 0972.45009
[12] Balachandran K., Uchiyama K.: Existence of solutions of nonlinear integrodifferential equations of Sobolev type with nonlocal condition in Banach spaces. Proc. Indian Acad. Sci. (Math. Sci.) 110, 225–232 (2000) · Zbl 0957.34058
[13] Balachandran K., Chandrasekaran M.: The nonlocal Cauchy problem for semilinear integrodifferential equation with devating argument. Proc. Edinburgh Math. Soc. 44, 63–70 (2001) · Zbl 0985.45010
[14] Balachandran K., Kumar R.R.: Existence of solutions of integrodifferential evolution equations with time varying delays. Appl. Math. E Notes 7, 1–8 (2007) · Zbl 1157.45307
[15] Bainov D.D., Simeonov P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical Group. Limited, New York (1993) · Zbl 0815.34001
[16] Lakshmikantham V., Bainov D.D., Simeonov P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, London (1989) · Zbl 0719.34002
[17] Lin Y., Liu J.H.: Semilinear integrodifferential equations with nonlocal Cauchy problem. Nonlinear Anal. 26, 1023–1033 (1996) · Zbl 0916.45014
[18] Liu J.H., Ezzinbi K.: Non-autonomous integrodifferential equations with nonlocal conditions. J. Integr. Equ. Appl. 15, 79–93 (2003) · Zbl 1044.45002
[19] Liang J., Liu J.H., Xiao T.-J.: Nonlocal Cauchy problems governed by compact operator families. Nonlinear Anal. 57, 183–189 (2004) · Zbl 1083.34045
[20] Liu J.: Nonlinear impulsive evolution equations. Dyn. Contin. Discrete Impuls. Syst. 6, 77–85 (1999) · Zbl 0932.34067
[21] Liang J., Liu J.H., Xiao T.-J.: Nonlocal problems for integrodifferential equations. Dyn. Contin. Discrete Impuls. Syst. 15, 815–824 (2008) · Zbl 1163.45010
[22] Liang J., Liu J.H., Xiao T.-J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model. 49, 798–804 (2009) · Zbl 1173.34048
[23] Mophou G.M.: Existence and uniqueness of mild solution to impulsive fractional differential equations. Nonlinear Anal. 72, 1604–1615 (2010) · Zbl 1187.34108
[24] Krasnoselskii M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, New York (1964)
[25] Schaefer H.: Über die methode der priori Schranhen. Math. Ann. 129, 415–416 (1955) · Zbl 0064.35703
[26] Wang, J., Xiang, X., Wei, W., Chen, Q.: The generalized Gronwall inequality and its application to periodic solutions of integrodifferential impulsive periodic system on Banach space. J. Inequal. Appl. 2008, Article ID 430521, 22 p. (2008) · Zbl 1161.45007
[27] Wang, J., Xiang, X., Wei, W.: Existence of periodic solutions for integrodifferential impulsive periodic system on Banach space. Abstract Appl. Anal. 2008, Article ID 939062, 19 p. (2008) · Zbl 1160.45006
[28] Wang J., Xiang X., Wei W.: Periodic solutions of a class of integrodifferential impulsive periodic systems with time-varying generating operators on Banach space. Electr. J. Qual. Theory Differ. Equ. 4, 1–17 (2009) · Zbl 1178.45017
[29] Wang, J., Xiang, X., Wei, W.: A class of nonlinear integrodifferential impulsive periodic systems of mixed type and optimal controls on Banach space. J. Appl. Math. Comput (in press). doi: 10.1007/s12190-009-0332-8 · Zbl 1213.34092
[30] Wei W., Xiang X., Peng Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55, 141–156 (2006) · Zbl 1101.45002
[31] Xiang X., Wei W.: Mild solution for a class of nonlinear impulsive evolution inclusion on Banach space. Southeast Asian Bull. Math. 30, 367–376 (2006) · Zbl 1121.34063
[32] Xiang X., Wei W., Jiang Y.: Strongly nonlinear impulsive system and necessary conditions of optimality. Dyn. Cont. Discrete Impuls. Syst. A Math. Anal. 12, 811–824 (2005) · Zbl 1081.49027
[33] Yu X.L., Xiang X., Wei W.: Solution bundle for class of impulsive differential inclusions on Banach spaces. J. Math. Anal. Appl. 327, 220–232 (2007) · Zbl 1113.34046
[34] Yang T.: Impulsive control theory. Springer, Berlin (2001) · Zbl 0996.93003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.