zbMATH — the first resource for mathematics

Stepanov-like pseudo-almost periodicity and semilinear differential equations with uniform continuity. (English) Zbl 1209.35011
Summary: By using the method of the invariant subspaces for unbounded linear operators and Schauder’s fixed point theorem, we give an existence theorem of mild pseudo-almost periodic solutions for some semilinear differential equations with a Stepanov-like pseudo-almost periodic term under some suitable assumptions. For this purpose, we show a new composition theorem of Stepanov-like pseudo-almost periodic functions. As applications, we examine the existence of mild pseudo-almost periodic solutions to some second-order hyperbolic equations. Our work is done under a “uniform continuity” condition instead of the “Lipschitz” condition assumed in the literature.

35B15 Almost and pseudo-almost periodic solutions to PDEs
47D03 Groups and semigroups of linear operators
Full Text: DOI
[1] Ait Dads E., Cieutat P., Ezzinbi K.: The existence of pseudo-almost periodic solutions for some nonlinear differential equations in Banach spaces. Nonlinear Anal. 69, 1325–1342 (2008) · Zbl 1151.34035
[2] Amir B., Maniar L.: Composition of pseudo almost-periodic functions and Cauchy problems with operator of nondense domain. Ann. Math. Blaise Pascal 6, 1–11 (1999) · Zbl 0941.34059
[3] Cuevas C., Pinto M.: Existence and uniqueness of pseudo-almost periodic solutions of semilinear Cauchy problem with non dense domain. Nonlinear Anal. 45, 73–83 (2001) · Zbl 0985.34052
[4] Diagana T.: Existence and uniqueness of pseudo-almost periodic solutions to semilinear differential equations and applications. Nonlinear Anal. 66, 228–240 (2007) · Zbl 1112.34034
[5] Diagana T.: Some remarks on some second-order hyperbolic differential equations. Semigroup Forum 68, 357–364 (2004) · Zbl 1083.34042
[6] Diagana T.: Pseudo Almost Periodic Functions in Banach Spaces. Nova Science Publishers, Inc., New York (2007) · Zbl 1234.43002
[7] Diagana T.: Stepanov-like pseudo almost periodic functions and their applications to differential equations. Commun. Math. Anal. 3, 9–18 (2007) · Zbl 1286.44007
[8] Diagana T.: Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations. Nonlinear Anal. 69, 4277–4285 (2008) · Zbl 1169.34330
[9] Diagana T., Mophou G.M., N’Guérékata G.M.: Existence of weighted pseudo-almost periodic solutions to some classes of differential equations with S p -weighted pseudo-almost periodic coefficients. Nonlinear Anal. 72, 430–438 (2010) · Zbl 1184.43005
[10] Diagana T., N’Guérékata G.M.: Some remarks on some abstract differential equations. Far East J. Math. Sci. 8, 313–322 (2003) · Zbl 1040.34068
[11] Diagana T., N’Guérékata G.M.: Some extension of the Bohr-Neugebauer- N’Guerekata theorem. J. Anal. Appl. 2, 1–10 (2004) · Zbl 1055.34132
[12] Ding H.S., Liang J., N’Guérékata G.M., Xiao T.J.: Mild pseudo-almost periodic solutions of nonautonomous semilinear evolution equations. Math. Comput. Model. 45, 579–584 (2007) · Zbl 1165.34387
[13] Fink, A.M.: Almost periodic differential equations. In: Lecture Notes in Mathematics, vol. 377. Springer-Verlag, New York (1974) · Zbl 0325.34039
[14] N’Guérékata G.M.: Topics in Almost Automorphy. Springer, New York (2005)
[15] N’Guérékata G.M., Pankov A.: Stepanov-like almost automorphic functions and monotone evolution equations. Nonlinear Anal. 68, 2658–2667 (2008) · Zbl 1140.34399
[16] El Haial A., Labbas R.: On the ellipticity and solvability of an abstract second-order differential equation. Electron. J. Differ. Equ. 57, 1–8 (2001) · Zbl 0996.34046
[17] Hu Z.R., Jin Z.: Stepanov-like pseudo-almost periodic mild solutions to perturbed nonautonomous evolution equations with infinite delay. Nonlinear. Anal. 71, 5381–5391 (2009) · Zbl 1173.42308
[18] Krein, S.G.: Linear Differential Equations in Banach Spaces. Moscow (1967). Translated from the Russian by J.M. Danskin. Translation of Mathematical Monographs, vol. 29. American Mathematical Society, Rhode Island (1997)
[19] Labbas R.: Equation elliptique abstraite du second ordre et équation parabolique pour le problème de Cauchy abstrait. C. R. Acad. Sci. Paris, t. Série I 305, 785–788 (1987) · Zbl 0636.35004
[20] Li H.X., Huang F.L., Li J.Y.: Composition of pseudo almost-periodic functions and semilinear differential equations. J. Math. Anal. Appl. 255, 436–446 (2001) · Zbl 1047.47030
[21] Locker, J.: Spectral theory of non-self-adjoint two-point differential operators. In: AMS Mathematical Surveys and Monographs, vol. 73. AMS, Providence (2000) · Zbl 0945.47004
[22] Zhang C.Y.: Pseudo almost periodic solutions of some differential equations. J. Math. Anal. Appl. 181, 62–76 (1994) · Zbl 0796.34029
[23] Zhang C.Y.: Pseudo almost periodic solutions of some differential equations, II. J. Math. Anal. Appl. 192, 543–561 (1995) · Zbl 0826.34040
[24] Zhang C.Y.: Integration of vector-valued pseudo almost periodic functions. Proc. Am. Math. Soc. 121, 167–174 (1994) · Zbl 0818.42003
[25] Zhao Z.H., Chang Y.K., Nieto J.J.: Almost automorphic and pseudo-almost automorphic mild solutions to an abstract differential equation in Banach spaces. Nonlinear Anal. 72, 1886–1894 (2010) · Zbl 1189.34116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.