zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. (English) Zbl 1209.35066
Summary: We propose a new generalization of the two-dimensional differential transform method that will extend the application of the method to a diffusion-wave equation with space- and time-fractional derivatives. The new generalization is based on generalized Taylor’s formula and Caputo fractional derivative. Theorems that are never existed before are introduced with their proofs. Several illustrative examples are given to demonstrate the effectiveness of the obtained results. The results reveal that the technique introduced here is very effective and convenient for solving partial differential equations of fractional order.

35K57Reaction-diffusion equations
35L05Wave equation (hyperbolic PDE)
Full Text: DOI
[1] Roman, H. E.; Alemany, P. A.: J. phys. Math. gen.. 27, 3407 (1994)
[2] Henry, B. I.; Wearne, S. L.: Physica A. 276, 448 (2000) · Zbl 0977.65118
[3] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[4] Klafter, J.; Blumen, A.; Shlesinger, M. F.: J. stat. Phys.. 36, 561 (1984)
[5] Mainardi, F.: Choas solitons fractals. 7, No. 9, 1461 (1996)
[6] Mainardi, F.: Appl. math. Lett.. 9, No. 6, 23 (1996)
[7] Agrawal, O. P.: Nonlinear dynam.. 29, 145 (2002)
[8] Agrawal, O. P.: Comput. structures. 79, 1497 (2001)
[9] Al-Khaled, K.; Momani, S.: Appl. math. Comput.. 165, 473 (2005)
[10] Odibat, Z.; Momani, S.: Appl. math. Comput.. 181, 767 (2006)
[11] Momani, S.; Odibat, Z.: J. appl. Math. comput.. 24, 167 (2007)
[12] Zhou, J. K.: Differential transformation and its applications for electrical circuits. (1986)
[13] Ayaz, F.: Appl. math. Comput.. 147, 547 (2004)
[14] Arikoglu, A.; Ozkol, I.: Appl. math. Comput.. 168, 1145 (2005)
[15] Bildik, N.; Konuralp, A.; Bek, F.; Kucukarslan, S.: Appl. math. Comput.. 172, 551 (2006)
[16] I.H. Hassan, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.06.040, in press
[17] Liu, H.; Song, Y.: Appl. math. Comput.. 184, 748 (2007)
[18] Arikoglu, A.; Ozkol, I.: Chaos solitons fractals. 34, 1473 (2007)
[19] Caputo, M.: J. roy. Austral. soc.. 13, 529 (1967)
[20] Odibat, Z.; Shawagfeh, N.: Appl. math. Comput.. 186, 286 (2007)