Nonparametric estimation of a point-spread function in multivariate problems. (English) Zbl 1209.62057

Summary: The removal of blur from a signal, in the presence of noise, is readily accomplished if the blur can be described in precise mathematical terms. However, there is growing interest in problems where the extent of blur is known only approximately, for example in terms of a blur function which depends on unknown parameters that must be computed from data. More challenging still is the case where no parametric assumptions are made about the blur function. There has been a limited amount of work in this setting, but it invariably relies on iterative methods, sometimes under assumptions that are mathematically convenient but physically unrealistic (e.g., that the operator defined by the blur function has an integrable inverse). In this paper we suggest a direct, noniterative approach to nonparametric, blind restoration of a signal. Our method is based on a new, ridge-based method for deconvolution, and requires only mild restrictions on the blur function. We show that the convergence rate of the method is close to optimal, from some viewpoints, and demonstrate its practical performance by applying it to real images.


62G07 Density estimation
62H12 Estimation in multivariate analysis
62G05 Nonparametric estimation
Full Text: DOI arXiv


[1] Andrews, H. C. and Hunt, B. R. (1977). Digital Image Restoration . Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0334.68049 · doi:10.1109/MC.1974.6323527
[2] Bates, R. H. T. and McDonnell, M. J. (1986). Image Restoration and Reconstruction . Clarendon Press, Oxford.
[3] Cannon, M. (1976). Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans. Acoust. Speech Signal Process. 24 58–63.
[4] Carasso, A. S. (1999). Linear and nonlinear image deblurring—a documented study. SIAM J. Numer. Anal. 36 1659–1689. JSTOR: · Zbl 1053.65084 · doi:10.1137/S0036142997320413
[5] Carasso, A. S. (2001). Direct blind deconvolution. SIAM J. Appl. Math. 61 1980–2007. JSTOR: · Zbl 0980.68123 · doi:10.1137/S0036139999362592
[6] Donoho, D. L. (1994). Statistical estimation and optimal recovery. Ann. Statist. 22 238–270. · Zbl 0805.62014 · doi:10.1214/aos/1176325367
[7] Donoho, D. L. and Low, M. G. (1992). Renormalization exponents and optimal pointwise rates of convergence. Ann. Statist. 20 944–970. · Zbl 0797.62032 · doi:10.1214/aos/1176348665
[8] Ermakov, M. (2003). Asymptotically minimax and Bayes estimation in a deconvolution problem. Inverse Problems 19 1339–1359. · Zbl 1040.62002 · doi:10.1088/0266-5611/19/6/007
[9] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257–1272. · Zbl 0729.62033 · doi:10.1214/aos/1176348248
[10] Figueiredo, M. A. T. and Nowak, R. D. (2003). An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12 906–916. · Zbl 1279.94015 · doi:10.1109/TIP.2003.814255
[11] Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing . Addison–Wesley, Reading, MA. · Zbl 0441.68097
[12] Hall, P. (1990). Optimal convergence rates in signal recovery. Ann. Probab. 18 887–900. · Zbl 0709.60048 · doi:10.1214/aop/1176990865
[13] Johnstone, I. M. and Silverman, B. W. (1990). Speed of estimation in positron emission tomography and related inverse problems. Ann. Statist. 18 251–280. · Zbl 0699.62043 · doi:10.1214/aos/1176347500
[14] Joshi, M. V. and Chaudhuri, S. (2005). Joint blind restoration and surface recovery in photometric stereo. J. Optical Soc. Amer. Ser. A 22 1066–1076.
[15] Katsaggelos, A. K. and Lay, K.-T. (1990). Image identification and image restoration based on the expectation–maximization algorithm. Optical Engineering 29 436–445.
[16] Kundur, D. and Hatzinakos, D. (1998). A novel blind deconvolution scheme for image restoration using recursive filtering. IEEE Trans. Signal Processing 46 375–390.
[17] Marron, J. S. and Tsybakov, A. B. (1995). Visual error criteria for qualitative smoothing. J. Amer. Statist. Assoc. 90 499–507. JSTOR: · Zbl 0826.62026 · doi:10.2307/2291060
[18] Qiu, P. (2005). Image Processing and Jump Regression Analysis . Wiley, Hoboken, NJ. · Zbl 1070.68146 · doi:10.1002/0471733156
[19] Rajagopalan, A. N. and Chaudhuri, S. (1999). MRF model-based identification of shift-variant point spread function for a class of imaging systems. Signal Processing 76 285–299. · Zbl 1023.94509 · doi:10.1016/S0165-1684(99)00015-8
[20] Skilling, J., ed. (1989). Maximum Entropy and Bayesian Methods . Kluwer, Dordrecht. · Zbl 0687.00021
[21] Van Rooij, A. C. M., Ruymgaart, F. H. and van Zwet, W. R. (1999). Asymptotic efficiency of inverse estimators. Theory Probab. Appl. 44 722–738. · Zbl 1045.62041 · doi:10.1137/S0040585X97977914
[22] Yang, Y., Galatsanos, N. P. and Stark, H. (1994). Projection-based blind deconvolution. J. Optical Soc. Amer. Ser. A 11 2401–2409.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.