zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact and analytical solution for nonlinear dispersive $K(m,p)$ equations using homotopy perturbation method. (English) Zbl 1209.65108
Summary: We have implemented a homotopy perturbation method to approximately solve the nonlinear dispersive $K(m,p)$ type equations. Using this scheme, the explicit exact solution is calculated in the form of a quickly convergent series with easily computable components. To illustrate the application of this method, numerical results are derived by using the calculated components of the variational series. The obtained results are found to be in good agreement with the exact solutions.

MSC:
65M99Numerical methods for IVP of PDE
65H20Global numerical methods for nonlinear algebraic equations, including homotopy approaches
WorldCat.org
Full Text: DOI
References:
[1] Kaya, D.: Appl. math. Comput.. 144, 353 (2003)
[2] Al-Khaled, K.: Appl. math. Comput.. 171, 281 (2005)
[3] Ganji, D. D.: Phys. lett. A. 355, 337 (2006)
[4] Ganji, D. D.; Rafei, M.: Phys. lett. A. 356, 131 (2006) · Zbl 1160.35517
[5] Ganji, D. D.; Rajabi, A.: Int. commun. Heat mass trans.. 33, No. 3, 391 (2006)
[6] Jin, C.; Liu, M.: Appl. math. Comput.. 169, 953 (2005)
[7] Adomian, G.: J. math. Anal. appl.. 135, 501 (1988)
[8] He, J. H.: Int. J. Mod. phys. B. 20, 1141 (2006)
[9] He, J. H.: Non-perturbative methods for strongly nonlinear problems. (2006)
[10] He, J. H.: Comput. methods appl. Mech. engrg.. 178, No. 3 -- 4, 257 (1999)
[11] He, J. H.: Int. J. Non-linear mech.. 35, No. 1, 37 (2000)
[12] He, J. H.: Int. J. Mod. phys. B. 20, 2561 (2006)
[13] He, J. H.: Appl. math. Comput.. 135, No. 1, 73 (2003)
[14] He, J. H.: Appl. math. Comput.. 151, No. 1, 287 (2004)
[15] He, J. H.: Phys. lett. A. 347, No. 4 -- 6, 228 (2005)
[16] He, J. H.: Chaos solitons fractals. 26, No. 3, 695 (2005)
[17] He, J. H.: Chaos solitons fractals. 26, No. 3, 827 (2005)
[18] He, J. H.: Int. J. Nonlinear sci. Numer. simul.. 6, No. 2, 207 (2005)
[19] He, J. H.: Phys. lett. A. 350, No. 1 -- 2, 87 (2006)
[20] Bildik, N.; Konuralp, A.: Int. J. Nonlinear sci. Numer. simul.. 7, No. 1, 65 (2006)
[21] He, J. H.; Wu, X. H.: Chaos solitons fractals. 29, No. 1, 108 (2006)
[22] He, J. H.: Appl. math. Comput.. 114, No. 2 -- 3, 115 (2000)
[23] Ablowitz, M. J.; Clarkson, P. A.: Solitons: nonlinear evolution equation and inverse scattering. (1991) · Zbl 0762.35001
[24] Miura, M. R.: Bäcklund transformation. (1978)
[25] Gu, C. H.: Darboux transformation in solitons theory and geometry applications. (1999)
[26] Gardner, C. S.: Phys. rev. Lett.. 19, 1095 (1967)
[27] Hirota, R.: Phys. rev. Lett.. 27, 1192 (1971)
[28] Malfliet, W.: Am. J. Phys.. 60, 659 (1992)
[29] Inc, M.; Fan, E. G.: Z. naturforsch.. 60, 7 (2005)
[30] Yan, Z.; Zhang, H. Q.: Phys. lett. A. 252, 291 (1999)
[31] Inc, M.; Evans, D. J.: Int. J. Comput. math.. 81, 473 (2004)
[32] Wang, M. L.: Phys. lett. A. 215, 279 (1996)
[33] Yan, Z.; Zhang, H. Q.: Phys. lett. A. 285, 355 (2001)
[34] Fu, Z.: Phys. lett. A. 290, 72 (2001)
[35] Yan, Z.: Chaos solitons fractals. 15, 575 (2003)
[36] Wazwaz, A. M.; Helal, M. A.: Chaos solitons fractals. 21, 579 (2004)
[37] Rosenau, P.; Hyman, J. M.: Phys. rev. Lett.. 70, 564 (1993)
[38] He, J. H.: Commun. nonlinear sci. Numer. simul.. 2, 230 (1997)
[39] He, J. H.: Commun. nonlinear sci. Numer. simul.. 2, 235 (1997)
[40] He, J. H.: Int. J. Nonlinear mech.. 34, 699 (1999)
[41] He, J. H.: Appl. math. Comput.. 114, 115 (2000)
[42] He, J. H.: Chaos solitons fractals. 19, 847 (2004)
[43] He, J. H.: Appl. math. Comput.. 143, 539 (2003)
[44] He, J. H.: Comput. methods appl. Mech. eng.. 167, 57 (1998)
[45] Wazwaz, A. M.: Math. comput. Simul.. 56, 269 (2001)
[46] Ismail, M. S.; Taha, T.: Math. comput. Simul.. 47, 519 (1998)
[47] Rosenau, P.: Physica D. 123, 525 (1998)
[48] Momani, S.; Odibat, Z.: Phys. lett. A. 355, 271 (2006) · Zbl 1096.65131
[49] He, J. H.: Comput. methods appl. Mech. eng.. 178, No. 3 -- 4, 257 (1999)
[50] Inc, M.: Physica A. 375, 447 (2007) · Zbl 1203.65125