zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. (English) Zbl 1209.65115
Summary: The homotopy analysis method developed for integer-order differential equation is directly extended to derive explicit and numerical solutions of nonlinear fractional differential equation for the first time. The fractional derivatives are described in the Caputo sense. To our knowledge, the Letter represents the first available numerical solutions of the fractional KdV-Burgers-Kuramoto equation.

65M99Numerical methods for IVP of PDE
35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering. (1991) · Zbl 0762.35001
[2] Wadat, M.: J. phys. Soc. jpn.. 32, 1681 (1972)
[3] Matveev, V. B.; Salle, M. A.: Darboux transformation and soliton. (1991) · Zbl 0744.35045
[4] Hirota, R.: The direct method in soliton theory. (2004) · Zbl 1099.35111
[5] Conte, R.; Musette, M.: J. phys. A: math. Gen.. 22, 169 (1989)
[6] Clarkson, P. A.; Kruskal, M. D.: J. math. Phys.. 30, 2201 (1989)
[7] Lou, S. Y.; Chen, C. L.; Tang, X. Y.: J. math. Phys.. 43, 4078 (2002)
[8] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Phys. lett. A. 289, 69 (2001)
[9] Fan, E. G.; Chao, L.: Phys. lett. A. 285, 373 (2001)
[10] Yan, Z. Y.: Phys. lett. A. 285, 355 (2001)
[11] Lü, Z. S.: Chaos solitons fractals. 17, 669 (2003)
[12] Li, B.; Chen, Y.; Zhang, H. Q.: Chaos solitons fractals. 15, 647 (2003)
[13] Chen, Y.; Zheng, X. D.; Li, B.; Zhang, H. Q.: Appl. math. Comput.. 149, 277 (2004)
[14] Xie, F. D.; Zhang, Y.; Lü, Z. S.: Chaos solitons fractals. 24, 257 (2005)
[15] Wang, Q.; Chen, Y.: Chaos solitons fractals. 30, 197 (2006)
[16] Song, L. N.; Wang, Q.; Zheng, Y.; Zhang, H. Q.: Chaos solitons fractals. 31, 548 (2007)
[17] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[18] Liao, S. J.: Int. J. Non-linear mech.. 34, 759 (1999)
[19] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method. (2003)
[20] Liao, S. J.: J. fluid mech.. 488, 189 (2003)
[21] Liao, S. J.: Appl. math. Comput.. 147, 499 (2004)
[22] Liao, S. J.: Int. J. Heat mass transfer. 48, 2529 (2005)
[23] Liao, S. J.: Appl. math. Comput.. 169, 1186 (2005)
[24] Liao, S. J.; Su, J.; Chwang, A. T.: Int. J. Heat mass transfer. 49, 2437 (2006)
[25] Liao, S. J.; Magyari, E.: Z. angew. Math. phys.. 57, 777 (2006)
[26] Liao, S. J.: Stud. appl. Math.. 117, 239 (2006)
[27] Abbasbandy, S.: Phys. lett. A. 360, 109 (2006)
[28] Zhu, S. P.: Anziam j.. 47, 477 (2006)
[29] Abbasbandy, S.: Phys. lett. A. 361, 478 (2007)
[30] West, B. J.; Bolognab, M.; Grigolini, P.: Physics of fractal operators. (2003)
[31] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations. (1993) · Zbl 0789.26002
[32] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[33] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[34] Caputo, M.: J. roy. Astr. soc.. 13, 529 (1967)