×

Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method. (English) Zbl 1209.65120

Summary: A new scheme, deduced from He’s homotopy perturbation method, is presented for solving Lane-Emden type singular IVPs problem. The scheme is shown to be highly accurate, and only a few terms are required to obtain accurate computable solutions.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chandrasekhar, S., Introduction to the study of stellar structure, (1967), Dover New York · Zbl 0079.23901
[2] Davis, H.T., Introduction to nonlinear differential and integral equations, (1962), Dover New York
[3] Richardson, O.U., The emission of electricity from hot bodies, (1921), Zongmans Green and Company London
[4] Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M., J. math. phys., 30, 1447, (1989)
[5] Shawagfeh, N.T., J. math. phys., 34, 9, 4364, (1993)
[6] Wazwaz, A.-M., Appl. math. comput., 118, 287, (2001)
[7] Wazwaz, A.-M., Appl. math. comput., 128, 45, (2001)
[8] Nouh, M.I., New astronomy, 9, 467, (2004)
[9] Mandelzweig, V.B.; Tabakin, F., Comput. phys. commun., 141, 268, (2001)
[10] Ramos, J.I., Comput. phys. commun., 153, 199, (2003)
[11] Bozkhov, Y.; Martins, A.C.G., Nonlinear anal., 57, 773, (2004)
[12] Momoniat, E.; Harley, C., New astronomy, 11, 520, (2006)
[13] Goenner, H.; Havas, P., J. math. phys., 41, 7029, (2000)
[14] Liao, S., Appl. math. comput., 142, 1, (2003)
[15] He, J.H., Appl. math. comput., 143, 539, (2003)
[16] J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos Solitons Fractals (2006), doi:10.1016/j.chaos.2006.11.018, in press
[17] Chowdhury, M.S.H.; Hashim, I., Phys. lett. A, 365, 5-6, 439, (2007) · Zbl 1203.65124
[18] Al-Khaled, K., Chaos solitons fractals, 33, 2, 678, (2006)
[19] He, J.H., Appl. math. comput., 151, 287, (2004)
[20] Öziş, T.; Yıldırım, A., Int. J. nonlinear sci. numer. simul., 8, 2, 243, (2007)
[21] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006)
[22] J.H. He, Non-perturbative methods for strongly nonlinear problems, dissertation.de-verlag im Internet GmbH, Berlin, 2006
[23] He, J.H., Comput. methods appl. mech. eng., 178, 3-4, 257, (1999)
[24] He, J.H., Int. J. non-linear mech., 35, 1, 37, (2000)
[25] He, J.H., Appl. math. comput., 135, 1, 73, (2003)
[26] He, J.H., Phys. lett. A, 350, 1-2, 87, (2006)
[27] He, J.H., Int. J. mod. phys. B, 20, 18, 2561, (2006)
[28] Öziş, T.; Yıldırım, A., Chaos solitons fractals, 34, 3, 989, (2007)
[29] Öziş, T.; Yıldırım, A., Int. J. nonlinear sci. numer. simul., 8, 2, 239, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.