×

Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization. (English) Zbl 1209.68604

Summary: Non-blind motion deblurring problems are highly ill-posed and so it is quite difficult to find the original sharp and clean image. To handle ill-posedness of the motion deblurring problem, we use nonlocal total variation (abbreviated as TV) regularization approaches. Nonlocal TV can restore periodic textures and local geometric information better than local TV. But, since nonlocal TV requires weighted difference between pixels in the whole image, it demands much more computational resources than local TV. By using the linearization of the fidelity term and the proximal function, our proposed algorithm does not require any inversion of blurring operator and nonlocal operator. Therefore, the proposed algorithm is very efficient for motion deblurring problems. We compare the numerical performance of our proposed algorithm with that of several state-of-the-art algorithms for deblurring problems. Our numerical results show that the proposed method is faster and more robust than state-of-the-art algorithms on motion deblurring problems.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

RecPF
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Fergus, R.; Singh, B.; Hertzmann, A.; Roweis, S. T.; Freeman, W. T., Removing camera shake from a single photograph, ACM Trans. Graphics, 25, 787-794 (2006) · Zbl 1371.94125
[2] Shan, Q.; Jia, J.; Agarwala, A., High-quality motion deblurring from a single image, ACM Trans. Graphics, 27, 73:1-73:10 (2008)
[3] Wang, C.; Sun, L.; Chen, Z. Y.; Zhang, J. W.; Yang, S. Q., Multi-scale blind motion deblurring using local minimum, Inverse Probl., 26, 015003 (2010) · Zbl 1191.68740
[4] Chan, T. F.; Wong, C. K., Total variation blind deconvolution, IEEE Trans. Image Process., 7, 370-375 (1998)
[6] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[7] Oliveira, J. P.; Bioucas-Dias, J. M.; Figueiredo, M. A.T., Adaptive total variation image deblurring: a majorization-minimization approach, Signal Process., 89, 1683-1693 (2009) · Zbl 1178.94029
[8] Gilboa, G.; Sochen, N.; Zeevi, Y. Y., Variational denoising of partly textured images by spatially varying constraints, IEEE Trans. Image Process., 15, 2281-2289 (2006)
[9] Li, F.; Shen, C.; Shen, C.; Zhang, G., Variational denoising of partly textured images, J. Vis. Commun. Image Representation, 20, 293-300 (2009)
[10] Gilboa, G.; Osher, S., Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6, 595-630 (2007) · Zbl 1140.68517
[11] Kindermann, S.; Osher, S.; Jones, P. W., Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4, 1091-1115 (2005) · Zbl 1161.68827
[12] Lou, Y.; Zhang, X.; Osher, S.; Bertozzi, A., Image recovery via nonlocal operators, J. Sci. Comput., 42, 185-197 (2010) · Zbl 1203.65088
[13] Zhang, X.; Burger, M.; Bresson, X.; Osher, S., Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3, 253-276 (2010) · Zbl 1191.94030
[14] Peyre, G.; Bougleux, S.; Cohen, L. D., Nonlocal regularization of inverse problems, (Forsyth, D. A.; Torr, P. H.S.; Zisserman, A., Proc of ECCV’08, Lecture Notes in Computer Science (2008), Springer), 57-68
[16] Elmoataz, A.; Lezoray, O.; Bougleux, S., Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing, IEEE Trans. Image Process., 17, 1047-1060 (2008)
[17] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 1005-1028 (2008) · Zbl 1181.35006
[18] Wang, Y.; Yang, J.; Yin, W.; Zhang, Y., A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1, 248-272 (2008) · Zbl 1187.68665
[21] Tseng, P., Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim., 29, 119-138 (1991) · Zbl 0737.90048
[23] Chan, T. F.; Yip, A. M.; Park, F. E., Simultaneous total variation image inpainting and blind deconvolution, Int. J. Imaging Syst. Technol., 15, 92-102 (2005)
[24] Donatelli, M.; Capizzano, S., Anti-reflective boundary conditions and re-blurring, Inverse Probl., 22, 169-182 (2005) · Zbl 1088.94510
[25] Hansen, C.; Nagy, J. G.; O’Leary, D. P., Deblurring Images—Matrices, Spectra, and Filtering (2006), SIAM: SIAM Philadelphia · Zbl 1112.68127
[26] Arias, P.; Caselles, V.; Sapiro, G., A variational framework for non-local image inpainting, (Cremers, D.; Boykov, Y.; Blake, A.; Schmidt, F. R., Proceedings of the Seventh International Conference on EMMCVPR, Lecture Notes in Computer Science (2009), Springer), 345-358
[27] Goldstein, T.; Osher, S., The split Bregman method for L1 regularized problems, SIAM J. Imaging Sci., 2, 323-343 (2009) · Zbl 1177.65088
[32] Wu, C.; Tai, X.-C., Augmented Lagrangian method dual methods and split Bregman iterations for ROF, vectorial TV and higher order models, SIAM J. Imaging Sci., 3, 300-339 (2010) · Zbl 1206.90245
[35] Chambolle, A., An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20, 89-97 (2004) · Zbl 1366.94048
[36] Beck, A.; Teboulle, M., Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18, 2419-2434 (2009) · Zbl 1371.94049
[38] Combettes, P.; Wajs, W., Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4, 1168-1200 (2005) · Zbl 1179.94031
[39] He, B.; Liao, L. Z.; Han, D.; Yang, H., A new inexact alteration directions method for monotone variational inequalities, Math. Program., 92, 103-118 (2002) · Zbl 1009.90108
[40] Hale, E. T.; Yin, W.; Zhang, Y., Fixed-point continuation for L1-minimization: methodology and convergence, SIAM J. Optim., 19, 1107-1130 (2008) · Zbl 1180.65076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.