zbMATH — the first resource for mathematics

Parametrization and geometric analysis of coordination controllers for multi-agent systems. (English) Zbl 1209.93012
The paper deals with the parametrization of the coordination controllers of multi-agent systems. A general expression of all the coordination controllers of the considered multi-agent systems is formulated. Following the results on the necessary and sufficient conditions for the formation stabilizing controllers [see Fax and Murray, Information flow and cooperative control of vehicle formation, IEEE Trans. Automat. Control 49, 1465–1476 (2004); G. Lafferriere, A. Williams, J. Caughman and J. J. P. Veerman, Syst. Control Lett. 54, No. 9, 899–910 (2005; Zbl 1129.93303)]) the authors show the geometric structures of coordination controllers with necessary and sufficient conditions for agent dynamics in general linear forms. It has been shown that the set of coordination controllers is diffeomorphic to the Cartesian product of the set of positive matrices and the set of skew symmetric matrices satisfying certain algebraic conditions. Based on parametrization, coordination problems are investigated for multi-agent systems with switching topologies.

93A14 Decentralized systems
93B25 Algebraic methods
35R35 Free boundary problems for PDEs
60G40 Stopping times; optimal stopping problems; gambling theory
62L15 Optimal stopping in statistics
49J40 Variational inequalities
Full Text: Link EuDML
[1] A. Ben-Israel and T. N. E. Greville: Generalized Inverses. Wiley, New York 1972.
[2] Y. Cao, Y. Sun, and J. Lam: Simultaneous stabilization via static output feedback and state feedback. IEEE Trans. Automat. Control 44 (1999), 1277-1282. · Zbl 0955.93044 · doi:10.1109/9.769390
[3] J. A. Fax and R. M. Murray: Information flow and cooperative control of vehicle formation. IEEE Trans. Automat. Control 49 (2004), 1465-1476. · Zbl 1365.90056
[4] C. Godsil and G. Royle: Algebraic Graph Theory. Springer-Verlag, New York 2001. · Zbl 0968.05002
[5] Y. Hong, L. Gao, D. Cheng, and J. Hu: Lyapuov-based approach to multi-agent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948. · Zbl 1366.93437
[6] R. A. Horn and C. R. Johnson: Matrix Theory. Cambridge University Press, Cambridge 1986.
[7] J. Imura and T. Yoshikawa: Parametrization of all stabilizing controllers of nonlinear systems. Systems Control Lett. 29 (1997), 207-213. · Zbl 0877.93110 · doi:10.1016/S0167-6911(96)00065-5
[8] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman: Decentralized control of vehicle formations. Systems Control Lett. 54 (2005), 899-910. · Zbl 1129.93303 · doi:10.1016/j.sysconle.2005.02.004
[9] R. A. Luke, P. Dorato, and C. T. Abdallah: A survey of state feedback simultaneous stabilization techniques.
[11] R. Ober: Balanced parametrization of classes of linear systems. SIAM J. Control Optim. 29 (1991), 1251-1287. · Zbl 0741.93010 · doi:10.1137/0329065
[12] A. Ohara and S. Amari: Differential geometric structures of stable state feedback systems with dual connections. Kybernetika 30 (1994), 369-386. · Zbl 0821.93029 · www.kybernetika.cz · eudml:27314
[13] A. Ohara and T. Kitamori: Geometric stuctures of stable state feedback systems. IEEE Trans. Automat. Control 38 (1993), 1579-1583. · Zbl 0790.93118 · doi:10.1109/9.241581
[14] R. Olfati-Saber and R. M. Murray: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. · Zbl 1365.93301
[15] W. Ren and E. Atkins: Second-order consensus protocols in multiple vehicle systems with local interactions. Proc. AIAA Guidance, Navigation, Control Conf. San Francisco, CA, 2005, Paper AIAA-2005-6238.
[16] X. Wang and Y. Hong: Finite-time consensus for multi-agent networks with second-order agent dynamics. IFAC World Congress, Korea 2008, pp. 15185-15190.
[17] M. Vidyasagar: Nonlinear Systems Analysis. Enflewood Cliffs, Prentice Hall, N.J. 1993. · Zbl 1006.93001 · doi:10.1137/1.9780898719185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.