Distributed robust filtering with \(H_\infty\) consensus of estimates. (English) Zbl 1209.93152

Summary: The paper addresses a problem of design of distributed robust filters using the recent vector dissipativity theory. The main result is a sufficient condition which guarantees a suboptimal \(H_\infty\) level of disagreement of estimates in a network of filters. It involves solving a convex optimization/feasibility problem subject to Linear Matrix Inequality (LMI) constraints. The special case of balanced interconnection graphs is also considered. A gradient descent type algorithm is presented which allows the nodes to compute their estimator parameters in a decentralized manner. The proposed approach is applied to the problem of observer-based robust synchronization of a nonlinear network to an isolated node.


93E11 Filtering in stochastic control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
93B36 \(H^\infty\)-control
93A15 Large-scale systems


Full Text: DOI


[1] Arcak, M.; Kokotovic, P., Nonlinear observers: a circle criterion design and robustness analysis, Automatica, 37, 12, 1923-1930, (2001) · Zbl 0996.93010
[2] Başar, T.; Bernhard, P., \(H^\infty\)-optimal control and related minimax design problems: a dynamic game approach, (1995), Birkhäuser Boston · Zbl 0835.93001
[3] Calafiore, G.; Polyak, B.T., Stochastic algorithms for exact and approximate feasibility of robust lmis, IEEE transactions on automatic control, 46, 11, 1755-1759, (2001) · Zbl 1007.93080
[4] Chen, M.-S.; Chen, C.-C., Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances, IEEE transactions on automatic control, 52, 12, 2365-2369, (2007) · Zbl 1366.93459
[5] Clark, J.; Holton, D.A., A first look at graph theory, (1991), World Scientific Singapore · Zbl 0765.05001
[6] Curtain, R.F.; Pritchard, A.J., Functional analysis in modern applied mathematics, (1977), Academic Press London, NY · Zbl 0448.46002
[7] de Castro, G.A.; Paganini, F., Convex synthesis of controllers for consensus, (), 4933-4938
[8] Garulli, A., & Giannitrapani, A. (2008). A set-membership approach to consensus problems with bounded measurement errors. In Proc. 47th IEEE CDC (pp. 2276-2281).
[9] Haddad, W.M.; Chellaboina, V.; Nersesov, S.G., Vector dissipativity theory and stability of feedback interconnections for large-scale non-linear dynamical systems, International journal of control, 77, 10, 907-919, (2004) · Zbl 1068.93057
[10] Huang, M., & Manton, J. H. (2007). Stochastic approximation for consensus seeking: mean square and almost sure convergence. In Proc. 46th IEEE CDC (pp. 306-311).
[11] Langbort, C.; Chandra, R.S.; D’Andrea, R., Distributed control design for systems interconnected over an arbitrary graph, IEEE transactions on automatic control, 49, 9, 1502-1519, (2004) · Zbl 1365.93141
[12] Löfberg, J. (2004). Yalmip: a toolbox for modeling and optimization in MATLAB. In Proc. CACSD conf. Taipei, Taiwan.
[13] Liberzon, D.; Tempo, R., Common Lyapunov functions and gradient algorithms, IEEE transactions on automatic control, 49, 990-994, (2004) · Zbl 1365.93469
[14] Li, Z.; Duan, Z.; Chen, G.; Huang, L., Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE transactions on circuits and systems I: regular papers, 57, 1, 213-224, (2010)
[15] Nelson, T. R., & Freeman, R. A. (2009). Decentralized \(H_\infty\) filtering in a multi-agent system. In Proc. American contr. conf. (pp. 5755-5760).
[16] Nijmeijer, H.; Mareels, I.M.Y., An observer looks at synchronization, IEEE transactios on circuits and systems I: fundamental theory and applications, 44, 10, 882-890, (1997)
[17] Olfati-Saber, R. (2007). Distributed Kalman filtering for sensor networks. In Proc. 46th IEEE CDC (pp. 5492-5498).
[18] Olfati-Saber, R.; Murray, R.M., Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[19] Petersen, I.R.; Ugrinovskii, V.; Savkin, A.V., Robust control design using \(H^\infty\) methods, (2000), Springer-Verlag · Zbl 0963.93003
[20] Pogromsky, A.; Nijmeijer, H., Observer-based robust synchronization of dynamical systems, International journal on bifurcation and chaos, 8, 11, 2243-2254, (1998) · Zbl 1140.93468
[21] Polyak, B.T., Gradient methods for solving equations and inequalities, USSR computational mathematics and mathematical physics, 4, 6, 17-32, (1964) · Zbl 0147.35302
[22] Polyak, B.T.; Tempo, R., Probabilistic robust design with linear quadratic regulators, Systems and control letters, 43, 343-353, (2001) · Zbl 0974.93070
[23] Rao, B.S.; Durrant-Whyte, H.F., Fully decentralised algorithm for multisensor Kalman filtering, IEE proceeding D: control theory and applications, 138, 5, 413-420, (1991)
[24] Semsar-Kazerooni, E., & Khorasani, K. (2009). An LMI approach to optimal consensus seeking in multi-agent systems. In Proc. American contr. conf. (pp. 4519-4524). · Zbl 1179.93025
[25] Semsar-Kazerooni, E.; Khorasani, K., Optimal consensus algorithms for cooperative team of agents subject to partial information, Automatica, 44, 2766-2777, (2008) · Zbl 1194.49056
[26] Siljak, D.D., Large-scale dynamic systems: stability and structure, (1978), North-Holland NY · Zbl 0382.93003
[27] Subbotin, M.V.; Smith, R.S., Design of distributed decentralized estimators for formations with fixed and stochastic communication topologies, Automatica, 45, 2491-2501, (2009) · Zbl 1183.93123
[28] Sussmann, H.J.; Kokotovic, P.V., The peaking phenomenon and the global stabilization of nonlinear systems, IEEE transactions on automatic control, 36, 424-440, (1991) · Zbl 0749.93070
[29] Ugrinovskii, V.A., Randomized algorithms for robust stability and guaranteed cost control of stochastic jump parameter systems with uncertain switching policies, Journal of optimization theory and applications, 124, 227-245, (2005) · Zbl 1078.93053
[30] Willems, J.C., Dissipative dynamical systems — part I: general theory, Archive of rational mechanics and analysis, 45, 321-351, (1972) · Zbl 0252.93002
[31] Yao, J.; Guan, Z.-H.; Hill, D.J., Passivity-based control and synchronization of general complex dynamical networks, Automatica, 45, 2107-2113, (2009) · Zbl 1175.93208
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.