zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem. (English) Zbl 1209.94027
Summary: Based on the one-parameter generalization of Shannon-Khinchin (SK) axioms presented by one of the authors, and utilizing a tree-graphical representation, we have developed for the first time a two-parameter generalization of the SK axioms in accordance with the two-parameter entropy introduced by Sharma, Taneja, and Mittal. The corresponding unique theorem is also proved. It is found that our two-parameter generalization of Shannon additivity is a natural consequence from the Leibniz product rule of the two-parameter Chakrabarti-Jagannathan difference operator.

94A17Measures of information, entropy
39A70Difference operators
Full Text: DOI
[1] Tsallis, C.; Mendes, R. S.; Plastino, A. R.: Physica A. 261, 534 (1998)
[2] Kaniadakis, G.; Lissia, M.; Rapisarda, A.: Proceedings of the international school and workshop on nonextensive thermodynamics and physical applications (NEXT2001). Physica A 305, No. 1 -- 2 (2001)
[3] Kaniadakis, G.; Lissia, M.: Proceedings of the 2nd sardinian international conference on news and expectations in thermostatistics (NEXT2003). Physica A 340, No. 1 -- 3 (2004)
[4] Gell-Mann, M.; Tsallis, C.: Nonextensive entropy: interdisciplinary applications. (2004) · Zbl 1127.82004
[5] Naudts, J.: Physica A. 340, 32 (2004) · Zbl 1052.94010
[6] Sharma, B. D.; Taneja, L. J.: Metrika. 22, 205 (1975)
[7] Mittal, D. P.: Metrika. 22, 35 (1975)
[8] Kaniadakis, G.; Lissia, M.; Scarfone, A. M.: Physica A. 340, 41 (2004)
[9] Kaniadakis, G.; Lissia, M.; Scarfone, A. M.: Phys. rev. E. 71, 046128 (2005)
[10] Tsallis, C.: J. stat. Phys.. 52, 479 (1998)
[11] Abe, S.: Phys. lett. A. 224, 326 (1997)
[12] Kaniadakis, G.: Physica A. 296, 405 (2001) · Zbl 0972.82012
[13] Kaniadakis, G.: Phys. rev. E. 66, 056125 (2002)
[14] Scarfone, A. M.; Wada, T.: Phys. rev. E. 72, 026123 (2005)
[15] Scarfone, A. M.: Physica A. 365, 63 (2006)
[16] Johal, R. S.: Phys. rev. E. 58, 4147 (1998)
[17] Borges, E. P.; Roditi, I.: Phys. lett. A. 246, 399 (1998) · Zbl 0940.82008
[18] Chakrabarti, R.; Jagannathan, R.: J. phys. A: math. Gen.. 24, L711 (1991) · Zbl 0735.17026
[19] Shannon, C. E.: Bell syst. Tech. J.. 27, 379 (1948)
[20] Khinchin, A. I.: Mathematical foundations of information theory. (1957) · Zbl 0088.10404
[21] Dos Santos, R. J. V.: J. math. Phys.. 38, 4104 (1997)
[22] Abe, S.: Phys. lett. A. 271, 74 (2000)
[23] Suyari, H.: IEEE trans. Inf. theory. 50, 1783 (2004)
[24] Curado, E. M. F.; Tsallis, C.: J. phys. A: math. Gen.. 24, L69 (1991)
[25] Havrda, J. H.; Charvat, F.: Kybernetika. 3, 30 (1967)
[26] Daróczy, Z.: Inform. control. 16, 36 (1970)