Bezrukavnikov, Roman; Finkelberg, Michael; Ostrik, Victor On tensor categories attached to cells in affine Weyl groups. III. (English) Zbl 1210.20004 Isr. J. Math. 170, 207-234 (2009). Summary: We prove a weak version of Lusztig’s conjecture on explicit description of the asymptotic Hecke algebras (both finite and affine) related to monodromic sheaves on the base affine space (both finite and affine), and explain its relation to Lusztig’s classification of character sheaves. For part II cf. R. Bezrukavnikov and V. Ostrik, Adv. Stud. Pure Math. 40, 101-119 (2004; Zbl 1078.20045). Cited in 1 ReviewCited in 14 Documents MSC: 20C08 Hecke algebras and their representations 20G05 Representation theory for linear algebraic groups 20F55 Reflection and Coxeter groups (group-theoretic aspects) Keywords:tensor categories; two-sided cells; affine Weyl groups; asymptotic affine Hecke algebras; Lusztig conjecture Citations:Zbl 1078.20045 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] S. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, Israel Journal of Mathematics 170 (2009), 135–183. · Zbl 1214.14011 · doi:10.1007/s11856-009-0024-y [2] R. Bezrukavnikov, On tensor categories attached to cells in affine Weyl groups, Advanced Studies in Pure Mathematics 40 (2004), 69–90. · Zbl 1078.20044 [3] R. Bezrukavnikov and V. Ostrik, On tensor categories attached to cells in affine Weyl groups, II, Advanced Studies in Pure Mathematics 40 (2004), 101–119. · Zbl 1078.20045 [4] A. Borel and J. De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Commentarii Mathematici Helvetici 23 (1949), 200–221. · Zbl 0034.30701 · doi:10.1007/BF02565599 [5] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Annals of Mathematics (2) 162 (2005), 581–642. · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581 [6] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Inventiones Mathematicae 144 (2001), 253–280. · Zbl 1072.14055 · doi:10.1007/s002220100122 [7] D. Gaitsgory, Braiding compatibilities, Advanced Studies in Pure Mathematics 40 (2004), 91–100. · Zbl 1147.14006 [8] C. Kassel, Quantum Groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995. · Zbl 0808.17003 [9] M. Kashiwara and T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case, Duke Mathematical Journal 84 (1996), 771–813. · Zbl 0929.17027 · doi:10.1215/S0012-7094-96-08424-0 [10] M. Kashiwara and T. Tanisaki, Kazhdan-Lusztig conjecture for symmetizable Kac-Moody algebras. III. Positive rational case, The Asian Journal of Mathematics 2, (1998), 779–832. · Zbl 1159.17315 [11] G. Lusztig, Unipotent representations of a finite Chevalley group of type E 8, The Quarterly Journal of Mathematics, Oxford 30 (1979), 315–338. · Zbl 0418.20038 · doi:10.1093/qmath/30.3.315 [12] G. Lusztig, A class of irreducible representations of a Weyl group I, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 41 (1979), no. 3, 323–335; A class of irreducible representations of a Weyl group II, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 44 (1982), 219–226. · Zbl 0435.20021 [13] G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, 107, Princeton University Press (1984). · Zbl 0556.20033 [14] G. Lusztig, Character sheaves III, Advances in Mathematics 57 (1985), no. 3, 266–315; Character sheaves IV, Advances in Mathematics 59 (1986), 1–63. · Zbl 0594.20031 · doi:10.1016/0001-8708(85)90065-9 [15] G. Lusztig, Sur le cellules gauches des groupes de Weyl, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 302 (1986), 5–8. [16] G. Lusztig, Leading coefficients of character values of Hecke algebras, Proceedings of Symposia in Pure Mathematics 47 Part 2 (1987), 235–262. · Zbl 0657.20037 [17] G. Lusztig, Cells in affineWeyl groups, IV, Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics 36 (1989), 297–328. [18] G. Lusztig, Monodromic systems on affine flag manifolds, Proceedings of The Royal Society of London. Series A 445 (1994), 231–246; Errata: 450 (1995), 731–732. · Zbl 0829.17018 · doi:10.1098/rspa.1994.0058 [19] G. Lusztig, Cells in affineWeyl groups and tensor categories, Advances in Mathematics 129 (1997), 85–98. · Zbl 0884.20026 · doi:10.1006/aima.1997.1645 [20] G. Lusztig and N. H. Xi, Canonical left cells in affine Weyl groups, Advances in Mathematics 72 (1988), 284–288. · Zbl 0664.20028 · doi:10.1016/0001-8708(88)90031-X [21] I. Mirković and K. Vilonen, Characteristic varieties of character sheaves, Inventiones Mathematicae 93 (1988), 405–418. · Zbl 0683.22012 · doi:10.1007/BF01394339 [22] V. Ostrik, Module categories over the Drinfeld double of a finite group, International Mathematics Research Notices (2003), number 27, 1507–1520. · Zbl 1044.18005 [23] W. Soergel, Character formulas for tilting modules over Kac-Moody algebras, Representation Theory. An Electronic Journal of the American Mathematical Society 2 (1998), 432–448. · Zbl 0964.17018 · doi:10.1090/S1088-4165-98-00057-0 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.