×

Proof of one optimal inequality for generalized logarithmic, arithmetic, and geometric means. (English) Zbl 1210.26033

The main theorem is an answer on two open problems given by B.-Y. Long and Y.-M. Chu [J. Inequal. Appl. 2010, Article ID 806825 (2010; Zbl 1187.26015)].
Theorem: Let \(\alpha \in (0,1/2)\cup (1/2,1)\), \(a\not= b\), \(a>0\), \(b>0\). Let \(p(\alpha)\) be a solution of \[ \frac 1p \ln (1+p)+\ln (\frac{\alpha}{2})=0 \] in \((-1,1)\). Then, if \(\alpha \in (0,1/2)\), then \[ \alpha A(a,b)+(1-\alpha)G(a,b) <L_p(a,b) \] for \(p\geq p(\alpha) \) and \(p(\alpha)\) is the best constant, and if \(\alpha \in (1/2,1)\), then \[ \alpha A(a,b)+(1-\alpha)G(a,b) >L_p(a,b) \] for \(p\leq p(\alpha) \) and \(p(\alpha)\) is the best constant.
\(A(a,b), G(a,b)\) and \(L_p(a,b)\) are notations for an arithmetic mean, a geometric mean and a generalized logarithmic mean respectively.

MSC:

26E60 Means
26D99 Inequalities in real analysis

Citations:

Zbl 1187.26015
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Long B-Y, Chu Y-M: Optimal inequalities for generalized logarithmic, arithmetic, and geometric means. Journal of Inequalities and Applications 2010, 2010:-10. · Zbl 1187.26015
[2] Alzer H: Ungleichungen für Mittelwerte. Archiv der Mathematik 1986, 47(5):422-426. 10.1007/BF01189983 · Zbl 0585.26014
[3] Alzer H, Qiu S-L: Inequalities for means in two variables. Archiv der Mathematik 2003, 80(2):201-215. 10.1007/s00013-003-0456-2 · Zbl 1020.26011
[4] Burk F: The geometric, logarithmic, and arithmetic mean inequality. The American Mathematical Monthly 1987, 94(6):527-528. 10.2307/2322844 · Zbl 0632.26008
[5] Janous W: A note on generalized Heronian means. Mathematical Inequalities & Applications 2001, 4(3):369-375. · Zbl 1128.26302
[6] Leach EB, Sholander MC: Extended mean values. II. Journal of Mathematical Analysis and Applications 1983, 92(1):207-223. 10.1016/0022-247X(83)90280-9 · Zbl 0517.26007
[7] Sándor J: On certain inequalities for means. Journal of Mathematical Analysis and Applications 1995, 189(2):602-606. 10.1006/jmaa.1995.1038 · Zbl 0822.26014
[8] Sándor J: On certain inequalities for means. II. Journal of Mathematical Analysis and Applications 1996, 199(2):629-635. 10.1006/jmaa.1996.0165 · Zbl 0854.26013
[9] Sándor J: On certain inequalities for means. III. Archiv der Mathematik 2001, 76(1):34-40. 10.1007/s000130050539 · Zbl 0976.26015
[10] Shi M-Y, Chu Y-M, Jiang Y-P: Optimal inequalities among various means of two arguments. Abstract and Applied Analysis 2009, 2009:-10. · Zbl 1187.26017
[11] Carlson BC: The logarithmic mean. The American Mathematical Monthly 1972, 79: 615-618. 10.2307/2317088 · Zbl 0241.33001
[12] Sándor J: On the identric and logarithmic means. Aequationes Mathematicae 1990, 40(2-3):261-270. · Zbl 0717.26014
[13] Sándor J: A note on some inequalities for means. Archiv der Mathematik 1991, 56(5):471-473. 10.1007/BF01200091 · Zbl 0693.26005
[14] Lin TP: The power mean and the logarithmic mean. The American Mathematical Monthly 1974, 81: 879-883. 10.2307/2319447 · Zbl 0292.26015
[15] Pittenger AO: Inequalities between arithmetic and logarithmic means. Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta 1980, (678-715):15-18. · Zbl 0469.26009
[16] Imoru CO: The power mean and the logarithmic mean. International Journal of Mathematics and Mathematical Sciences 1982, 5(2):337-343. 10.1155/S0161171282000313 · Zbl 0483.26012
[17] Chen C-P: The monotonicity of the ratio between generalized logarithmic means. Journal of Mathematical Analysis and Applications 2008, 345(1):86-89. 10.1016/j.jmaa.2008.03.071 · Zbl 1160.26012
[18] Li X, Chen C-P, Qi F: Monotonicity result for generalized logarithmic means. Tamkang Journal of Mathematics 2007, 38(2):177-181. · Zbl 1132.26326
[19] Qi F, Chen S-X, Chen C-P: Monotonicity of ratio between the generalized logarithmic means. Mathematical Inequalities & Applications 2007, 10(3):559-564. · Zbl 1127.26021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.