zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotically linear solutions for some linear fractional differential equations. (English) Zbl 1210.34005
Summary: We establish that under some simple restrictions on the functional coefficient $a(t)$ the fractional differential equation $$_0D^\alpha_t[tx'-x+x(0)]+a(t)x=0,\quad t>0,$$ has a solution expressible as $ct+d+o(1)$ for $t\to+\infty$, where $_0D^\alpha_t$ designates the Riemann-Liouville derivative of order $a\in (0,1)$ and $c,d\in\Bbb R$.

MSC:
34A08Fractional differential equations
34D05Asymptotic stability of ODE
34A30Linear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] O. G. Mustafa and Y. V. Rogovchenko, “Asymptotic integration of a class of nonlinear differential equations,” Applied Mathematics Letters, vol. 19, no. 9, pp. 849-853, 2006. · Zbl 1126.34339 · doi:10.1016/j.aml.2005.10.013
[2] R. P. Agarwal and O. G. Mustafa, “A Riccatian approach to the decay of solutions of certain semi-linear PDE’s,” Applied Mathematics Letters, vol. 20, no. 12, pp. 1206-1210, 2007. · Zbl 1137.35356 · doi:10.1016/j.aml.2006.11.015
[3] O. G. Mustafa, “Hille’s non-oscillation theorem and the decay of solutions to a class of semi-linear PDE’s,” Archiv der Mathematik, vol. 89, no. 5, pp. 452-458, 2007. · Zbl 1147.35014 · doi:10.1007/s00013-007-2201-8
[4] S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1999. · Zbl 0932.53001
[5] V. Lakshmikantham, “Theory of fractional functional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 10, pp. 3337-3343, 2008. · Zbl 1162.34344 · doi:10.1016/j.na.2007.09.025
[6] V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2677-2682, 2008. · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[7] R. P. Agarwal, M. Benchohra, and S. Hamani, “Boundary value problems for fractional differential equations,” Georgian Mathematical Journal, vol. 16, no. 3, pp. 401-411, 2009. · Zbl 1179.26011 · http://www.heldermann.de/GMJ/GMJ16/GMJ163/gmj16031.htm
[8] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[9] F. Riewe, “Mechanics with fractional derivatives,” Physical Review E, vol. 55, no. 3, pp. 3581-3592, 1997. · doi:10.1103/PhysRevE.55.3581
[10] S. Westerlund, “Causality,” Tech. Rep. 940426, University of Kalmar, Kalmar, Sweden, 1994.
[11] X. Y. Jiang and M. Y. Xu, “The fractional finite Hankel transform and its applications in fractal space,” Journal of Physics A, vol. 42, no. 38, Article ID 385201, 11 pages, 2009. · Zbl 1187.44002 · doi:10.1088/1751-8113/42/38/385201
[12] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[13] D. B\ualeanu, O. G. Mustafa, and R. P. Agarwal, “An existence result for a superlinear fractional differential equation,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1129-1132, 2010. · Zbl 1200.34004 · doi:10.1016/j.aml.2010.04.049
[14] D. B\ualeanu, O. G. Mustafa, and R. P. Agarwal, “On the solution set for a class of sequential fractional differential equations,” Journal of Physics A, vol. 43, Article ID 385209, 2010. · Zbl 1216.34004 · doi:10.1088/1751-8113/43/38/385209
[15] Y. Zhou and F. Jiao, “Nonlocal Cauchy problem for fractional evolution equations,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 4465-4475, 2010. · Zbl 1260.34017 · doi:10.1016/j.nonrwa.2010.05.029
[16] N. H. Ibragimov and V. F. Kovalev, Approximate and Renormgroup Symmetries, Nonlinear Physical Science, Higher Education Press, Beijing, China; Springer, Berlin, Germany, 2009. · Zbl 1170.22001 · doi:10.1007/978-3-642-00228-1