×

Periodic solutions of a logistic type population model with harvesting. (English) Zbl 1210.34057

Summary: We consider a bifurcation problem arising from population biology
\[ \frac{du(t)}{dt} = f(u(t))-\varepsilon h(t), \]
where \(f(u)\) is a logistic type growth rate function, \(\varepsilon \geqslant 0\), \(h(t)\) is a continuous function of period \(T\) such that \(\int _0^Th(t)\,dt >0\). We prove that there exists an \(\varepsilon_0 >0\) such that the equation has exactly two \(T\)-periodic solutions when \(0< \varepsilon < \varepsilon _0\), exactly one \(T\)-periodic solution when \(\varepsilon = \varepsilon _0\), and no \(T\)-periodic solution when \(\varepsilon > \varepsilon _0\)

MSC:

34C25 Periodic solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ambrosetti, Antonio; Prodi, Giovanni, A Primer of Nonlinear Analysis, Cambridge Stud. Adv. Math., vol. 34 (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0818.47059
[2] Andersen, Kurt Munk; Sandqvist, Allan, On the determination of the number of periodic (or closed) solutions of a scalar differential equation with convexity, J. Math. Anal. Appl., 331, 1, 206-219 (2007) · Zbl 1123.34033
[3] Benardete, Diego M.; Noonburg, V. W.; Pollina, B., Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation, Amer. Math. Monthly, 115, 3, 202-219 (2008) · Zbl 1361.34038
[4] Brauer, Fred; Sànchez, David A., Periodic environments and periodic harvesting, Natur. Resource Modeling, 16, 3, 233-244 (2003) · Zbl 1067.92056
[5] Bravo, José Luis; Fernández, Manuel, Local and global bifurcation in periodic scalar ODEs, Nonlinear Anal., 68, 9, 2851-2858 (2008) · Zbl 1167.34333
[6] Bravo, José Luis; Fernández, Manuel; Tineo, Antonio, The number of bifurcation points of a periodic one-parameter ODE with at most two periodic solutions, Nonlinear Anal., 57, 1, 3-22 (2004) · Zbl 1082.34034
[7] Chen, Hongbin; Li, Yi, Exact multiplicity for periodic solutions of a first-order differential equation, J. Math. Anal. Appl., 292, 2, 415-422 (2004) · Zbl 1089.34518
[8] Clark, Colin W., Mathematical Bioeconomics: The Optimal Management of Renewable Resources (1991), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0712.90018
[9] Crandall, Michael G.; Rabinowitz, Paul H., Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., 52, 161-180 (1973) · Zbl 0275.47044
[10] Dancer, E. Norman; Shi, Junping, Uniqueness and nonexistence of positive solutions to semipositone problems, Bull. Lond. Math. Soc., 38, 6, 1033-1044 (2006) · Zbl 1194.35164
[11] Korman, Philip; Ouyang, Tiancheng, Exact multiplicity results for two classes of periodic equations, J. Math. Anal. Appl., 194, 3, 763-779 (1995) · Zbl 0844.34036
[12] Lazer, Alan, Qualitative studies of the solutions of the equation of population growth with harvesting, Mat. Ensen. Univ., 17, 29-39 (1980), (in Spanish)
[13] Lazer, A. C.; Sànchez, D. A., Periodic equilibria under periodic harvesting, Math. Mag., 57, 3, 156-158 (1984) · Zbl 0539.92026
[14] Liu, Ping; Shi, Junping; Wang, Yuwen, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251, 2, 573-600 (2007) · Zbl 1139.47042
[15] Mawhin, Jean, First order ordinary differential equations with several periodic solutions, Z. Angew. Math. Phys., 38, 2, 257-265 (1987) · Zbl 0644.34035
[16] McKean, H. P.; Scovel, J. C., Geometry of some simple nonlinear differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 13, 2, 299-346 (1986) · Zbl 0648.47048
[17] Oruganti, Shobha; Shi, Junping; Shivaji, Ratnasingham, Diffusive logistic equation with constant yield harvesting. I. Steady states, Trans. Amer. Math. Soc., 354, 9, 3601-3619 (2002) · Zbl 1109.35049
[18] Pliss, V. A., Nonlocal Problems of the Theory of Oscillations (1966), Academic Press: Academic Press New York-London · Zbl 0151.12104
[19] Shi, Junping, Problem Section 2006-1, Electron. J. Differential Equations · Zbl 0971.35036
[20] Shi, Junping; Shivaji, Ratnasingham, Global bifurcation for concave semipositon problems, (Goldstein, G. R.; Nagel, R.; Romanelli, S., Advances in Evolution Equations: Proceedings in Honor of J.A. Goldstein’s 60th Birthday (2003), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York, Basel), 385-398 · Zbl 1290.35108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.