## Oscillation for a second-order neutral differential equation with impulses.(English)Zbl 1210.34090

The goal of this paper is to study oscillating systems which remain oscillating after the system is perturbed by impulses. The main results give sufficient conditions for the solutions to a class of second-order neutral delay differential systems with impulses to be oscillatory. The results in this work provide extensions to some previous oscillation criteria and are based on some ideas and results included in [L. P. Gimenes and M. Federson, Comput. Math. Appl. 52, 819–828 (2006; Zbl 1134.34040); V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of impulsive differential equations. Series in Modern Applied Mathematics 6, Singapore, World Scientific (1989; Zbl 0719.34002) and H.-J. Li, Math. Comput. Modelling 25, No. 3, 69–79 (1997; Zbl 0882.34077)].
To be precise, the following system is studied
$[r(t)(x(t)+p(t)x(t-\tau))']'+f(t,x(t),x(t-\delta))=0,\qquad t \geq t_0,\qquad t \neq t_k,$
$x(t_k)=I_k(x(t_k^-)),\qquad x'(t_k)=J_k(x'(t_k^-)),\qquad k=1,2,\dots,$
$x(t)=\phi(t),\qquad t_0-\sigma \leq t \leq t_0,$
where $$\delta$$ and $$\tau$$ are positive real numbers, $$\sigma:=\max\{\delta,\tau\}$$, $$0\leq t_0<t_1<\dots<t_k<\cdots$$ with $$\{t_k\} \rightarrow +\infty$$, $$t_{k+1}-t_k>\sigma$$ $$\forall k \in \mathbb{N}$$, $$p \in PC^1([t_0,+\infty), \mathbb{R}^+)$$ and $$\phi,\, \phi':[t_0-\sigma,t_0]\rightarrow \mathbb{R}$$ have at most a finite number of discontinuities of the first kind at which they are right continuous.
Some particular oscillatory nonimpulsive neutral delay differential equations of second order are considered to illustrate that the solutions remain oscillatory under the introduction of impulses. An application to the extended Emden-Fowler equation $[y(t)+p(t)y(t-\tau)]''+q(t)f(y(t-\delta))=0$
is also provided.

### MSC:

 34K11 Oscillation theory of functional-differential equations 34K45 Functional-differential equations with impulses 34K40 Neutral functional-differential equations

### Citations:

Zbl 1134.34040; Zbl 0719.34002; Zbl 0882.34077
Full Text:

### References:

  Atkinson, F. V., On second order nonlinear oscillation, Pacific J. Math., 5, 643-647 (1955) · Zbl 0065.32001  Belohorec, S., Oscillatory solution of certain nonlinear differential equations of the second order, Math. Fyz. Casopis Sloven. Akad. Vied., 11, 250-255 (1961) · Zbl 0108.09103  Chandrasekhar, S., Principles of Stellar Dynamics (1942), University of Chicago Press: University of Chicago Press Chicago · JFM 68.0655.03  Chen, M.; Xu, Z., Interval oscillation of second-order Emden-Fowler neutral delay differential equations, Electron. J. Differen. Equat., 58, 1-9 (2007) · Zbl 1141.34339  Diblk, J.; Svoboda, Z., Positive solutions of p-type retarded functional differential equations, Nonlinear Anal., 64, 1831-1848 (2006) · Zbl 1109.34058  Driver, R. D., A mixed neutral system, Nonlinear Anal., 8, 155-158 (1984) · Zbl 0553.34042  Gimenes, L. P.; Federson, M., Oscillation by impulses for a second-order delay differential equation, Comput. Math. Appl., 52, 819-828 (2006) · Zbl 1134.34040  Govinder, K. S.; Leach, P. G.L.; Maharaj, S. D., Integrability analysis of a conformal equation arising in general relativity, Int. J. Theoret. Phys., 34, 625-639 (1994) · Zbl 0823.34008  Havas, P., Shear-free spherically symmetric perfect fluid solutions with conformal symmetry, General Relat. Gravit., 24, 599-615 (1992)  He, Z.; Ge, W., Oscillations of second-order nonlinear impulsive ordinary differential equations, J. Comput. Appl. Math., 158, 397-406 (2003) · Zbl 1042.34063  Kummer, E. E., De generali quadam $$æ$$ quatione differentiali tertii ordinis, J. fr die Reine und Angewandte Mathematik, 100, 1-9 (1887), reprinted from the Programm des evangelischen Knigl und Stadtgymnasiums in Liegnitz for 1834 · JFM 18.0297.01  Ladde, G. S.; Lakshmikantham, V.; Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments (1987), Marcel Dekker: Marcel Dekker New York · Zbl 0832.34071  Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore · Zbl 0719.34002  Li, W. T., Interval oscillation criteria of second-order half-linear functional differential equations, Appl. Math. Comput., 155, 451-468 (2004) · Zbl 1061.34048  Li, Horng-Jaan, Oscillation of solutions of second-order neutral delay differential equations with integrable coefficients, Math. Comput. Modell., 25, 3, 69-79 (1997) · Zbl 0882.34077  Lin, X., Oscillation of second-order nonlinear neutral differential equations, J. Math. Anal. Appl., 309, 442-452 (2005) · Zbl 1085.34053  Liouville, J., Sur le développement des functions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre contenant un paramètre variable, J. de Mathématiques pures et appliquées, II, 16-35 (1837)  Luo, J., Second-order quasilinear oscillation with impulses, Comput. Math. Appl., 46, 279-291 (2003) · Zbl 1063.34004  Luo, W.; Luo, J.; Debnath, L., Oscillation of second order quasilinear delay differential equations with impulses, J. Appl. Math. Comput., 13, 165-182 (2003) · Zbl 1055.34126  Luo, Z.; Shen, J., Oscillation of second order linear differential equations with impulses, Appl. Math. Lett., 20, 1, 75-81 (2007) · Zbl 1130.34314  Mahomed, F. M.; Leach, P. G.L., Symmetry Lie algebras of $$n$$ th order ordinary differential equations, J. Math. Anal. Appl., 151, 80-107 (1990) · Zbl 0719.34018  Mellin, C. M.; Mahomed, F. M.; Leach, P. G.L., Solution of generalized Emden-Fowler equations with two symmetries, Int. J. Nonlinear Mech., 29, 529-538 (1994) · Zbl 0812.34001  Meng, F.; Wang, J., Oscillation criteria for second order quasi-linear neutral delay differential equations, J. Indones. Math. Soc. (MIHMI), 10, 61-75 (2004) · Zbl 1109.34049  Meng, Q.; Yan, J., Bounded oscillation for second order non-linear neutral delay differential equations in critical and non-critical cases, Nonlinear Anal., 64, 1543-1561 (2006) · Zbl 1109.34050  Peng, M.; Ge, W., Oscillation criteria for second-order nonlinear differential equations with impulses, Comput. Math. Appl., 39, 217-225 (2000) · Zbl 0948.34044  Peng, M., Oscillation theorems of second-order nonlinear neutral delay difference equations with impulses, Comput. Math. Appl., 44, 5-6, 741-748 (2002) · Zbl 1035.39006  Qin, H.; Shang, N.; Lu, Y., A note on oscillation criteria of second order nonlinear neutral delay differential equations, Comput. Math. Appl., 56, 2987-2992 (2008) · Zbl 1165.34397  Srivastava, D. C., Exact solutions for shear-free motion of spherically symmetric perfect fluid distributions in general relativity, Classical Quant. Gravity, 4, 1093-1117 (1987) · Zbl 0649.76070  Sun, Y. G.; Saker, S. H., Oscillation for second-order nonlinear neutral delay difference equations, Appl. Math. Comput., 163, 909-918 (2005) · Zbl 1078.39014  Wu, Xiu-li; Chen, Si-Yang; Hong, Ji, Oscillation of a class of second-order nonlinear ODE with impulses, Appl. Math. Comput., 138, 2-3, 181-188 (2003) · Zbl 1034.34038  Xu, R.; Meng, F., Oscillation criteria for second order quasi-linear neutral delay differential equations, J. Comput. Appl. Math. Comput., 192, 216-222 (2007) · Zbl 1193.34137  Xu, Z.; Liu, X., Philos-type oscillation criteria for Emden-Fowler neutral delay differential equations, J. Comput. Appl. Math., 206, 2, 1116-1126 (2007) · Zbl 1122.34045  Wong, J. S.W., Necessary and sufficient conditions for oscillation for second order neutral differential equations, J. Math. Anal. Appl., 252, 342-352 (2000) · Zbl 0976.34057  Yang, Q.; Yang, L.; Zhu, S., Interval criteria for oscillation of second-order nonlinear neutral differential equations, Comput. Math. Appl., 46, 903-918 (2003) · Zbl 1057.34088  Zhang, B. G.; Shanliang, Zhu, Oscillation of second-order nonlinear delay dynamic equations on time scales, Comput. Math. Appl., 49, 599-609 (2005) · Zbl 1075.34061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.