zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New results on global exponential stabilization of impulsive functional differential equations with infinite delays or finite delays. (English) Zbl 1210.34103
The author is interested in the exponential stability of impulsive functional differential equations. He uses a Lyapunov functional and an improved Razumikhin technique to prove his result.

MSC:
34K20Stability theory of functional-differential equations
34K45Functional-differential equations with impulses
WorldCat.org
Full Text: DOI
References:
[1] Gopalsamy, K.; Zhang, B.: On delay differential equations with impulses. J. math. Anal. appl. 139, 110-122 (1989) · Zbl 0687.34065
[2] Anokhin, A.: On linear impulse systems for functional differential equations. Soviet math. Dokl. 33, 220-223 (1986) · Zbl 0615.34064
[3] Ignatyev, A.: On the stability of invariant sets of systems with impulse effect. Nonlinear anal. 69, 53-72 (2008) · Zbl 1145.34032
[4] Stamova, I.: Vector Lyapunov functions for practical stability of nonlinear impulsive functional differential equations. J. math. Anal. appl. 325, 612-623 (2007) · Zbl 1113.34058
[5] Liu, X.; Wang, Q.: The method of Lyapunov functionals and exponential stability of impulsive systems with time delay. Nonlinear anal. 66, 1465-1484 (2007) · Zbl 1123.34065
[6] Wang, Q.; Liu, X.: Impulsive stabilization of delay differential systems via the Lyapunov--razumikhin method. Appl. math. Lett. 20, 839-845 (2007) · Zbl 1159.34347
[7] Yan, J.; Shen, J.: Impulsive stabilization of functional differential equations by Lyapunov--razumikhin functions. Nonlinear anal. 37, 245-255 (1999) · Zbl 0951.34049
[8] Fu, X.; Li, X.: W-stability theorems of nonlinear impulsive functional differential systems. J. comput. Appl. math., 33-46 (2008) · Zbl 1162.34058
[9] Benchohra, M.; Henderson, J.; Ntouyas, S.: Impulsive differential equations and inclusions. (2006) · Zbl 1130.34003
[10] Samoilenko, A.; Perestyuk, N.: Impulsive differential equations. (1995) · Zbl 0837.34003
[11] Zavalishchin, S.; Sesekin, A.: Dynamic impulse systems. Theory and applications. Mathematics and its applications 394 (1997) · Zbl 0880.46031
[12] Nieto, J. J.; O’regan, D.: Variational approach to impulsive differential equations. Nonlinear anal. RWA 10, 680-690 (2009) · Zbl 1167.34318
[13] Nieto, J. J.; Rodriguez-Lopez, R.: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J. math. Anal. appl. 318, 593-610 (2006) · Zbl 1101.34051
[14] Nieto, J. J.; Tisdell, C. C.: On exact controllability of first-order impulsive differential equations. Adv. difference equ. 2010, 9 pages (2010) · Zbl 1193.34125
[15] Lakshmikantham, V.; Wen, L.; Zhang, B.: Theory of differential equations with unbounded delay. Mathematics and its applications (1994) · Zbl 0823.34069
[16] Fu, X.; Yan, B.; Liu, Y.: Introduction of impulsive differential systems. (2005)
[17] Shen, J.: Existence and uniqueness of solutions for a class of infinite delay functional differential equations with applications to impulsive differential equations. J. huaihua teach. Coll. 15, 45-51 (1996)
[18] Ouahab, A.: Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay. Nonlinear anal. 67, 1027-1041 (2007) · Zbl 1126.34050
[19] Zhang, Y.; Sun, J.: Stability of impulsive infinite delay differential equations. Appl. math. Lett. 19, 1100-1106 (2006) · Zbl 1125.34345
[20] Luo, Z.; Shen, J.: Stability of impulsive functional differential equations via the Liapunov functional. Appl. math. Lett. 22, 163-169 (2009)
[21] Luo, Z.; Shen, J.: Stability and boundedness for impulsive functional differential equations with infinite delays. Nonlinear anal. 46, 475-493 (2001) · Zbl 0997.34066
[22] Li, X.: Uniform asymptotic stability and global stability of impulsive infinite delay differential equations. Nonlinear anal. 70, 1975-1983 (2009)
[23] Lakshmikantham, V.; Bainov, D.; Simeonov, P.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[24] Bainov, D.; Simeonov, P.: Systems with impulse effect: stability theory and applications. (1989) · Zbl 0676.34035
[25] Liu, X.; Rohlf, K.: Impulsive control of Lotka--Volterra models. IMA J. Math. control inform. 15, 269-284 (1998) · Zbl 0949.93069
[26] Yang, T.; Chua, L.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE trans. Circuits syst. I 44, 976-988 (1997)
[27] Zeng, G.; Wang, F.; Nieto, J. J.: Complexity of a delayed predator--prey model with impulsive harvest and Holling-type II functional response. Adv. complex syst. 11, 77-97 (2008) · Zbl 1168.34052
[28] Zhang, H.; Chen, L.; Nieto, J. J.: A delayed epidemic model with stage structure and pulses for management strategy. Nonlinear anal. RWA 9, 1714-1726 (2008) · Zbl 1154.34394
[29] Meng, X.: Dynamic analysis of michaelis--menten chemostat-type competition models with time delay and pulse in a polluted environment. J. math. Chem. 47, 123-144 (2010) · Zbl 1194.92075
[30] Wang, L.: The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear anal. RWA 11, 1374-1386 (2010) · Zbl 1188.93038
[31] Haykin, S.: Neural networks. (1994) · Zbl 0828.68103
[32] Niculescu, S.: Delay effects on stability: A robust control approach. (2001) · Zbl 0997.93001
[33] Fu, X.; Li, X.: Razumikhin-type theorems on exponential stability of impulsive infinite delay differential systems. J. comput. Appl. math. 224, 1-10 (2009) · Zbl 1179.34079
[34] Weng, A.; Sun, J.: Impulsive stabilization of second-order nonlinear delay differential systems. Appl. math. Comput. 214, 95-101 (2009) · Zbl 1175.34098
[35] Weng, A.; Sun, J.: Impulsive stabilization of second-order delay differential equations. Nonlinear anal. RWA 8, 1410-1420 (2007) · Zbl 1136.93036
[36] Li, X.; Weng, P.: Impulsive stabilization of two kinds of second-order linear delay differential equations. J. math. Anal. appl. 291, 270-281 (2004) · Zbl 1047.34098
[37] Gimenes, L.; Federson, M.: Existence and impulsive stability for second order retarded differential equations. Appl. math. Comput. 177, 44-62 (2006) · Zbl 1105.34049
[38] Luo, Z.; Shen, J.: Impulsive stabilization of functional differential equations with infinite delays. Appl. math. Lett. 16, 695-701 (2003) · Zbl 1068.93054