×

Existence and asymptotic behavior of positive solutions of functional differential equations of delayed type. (English) Zbl 1210.34106

Summary: Solutions of the equation
\[ y(t) = - f (t,y_t) \]
are considered for \(t\to \infty\). The existence of two classes of positive solutions which are asymptotically different is proved by using the retract method combined with Razumikhin’s technique. By means of two auxiliary linear equations, which are constructed using upper and lower linear functional estimates of the right-hand side of the equation considered, inequalities for both types of positive solutions are given as well.

MSC:

34K25 Asymptotic theory of functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. P. Agarwal, M. Bohner, and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, vol. 267 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2004. · Zbl 1177.68025 · doi:10.1016/j.ipl.2004.01.008
[2] R. D. Driver, Ordinary and Delay Differential Equations, Springer, New York, NY, USA, 1977. · Zbl 0374.34001
[3] L. H. Erbe, Q. Kong, and B. G. Zhang, Oscillation Theory for Functional-Differential Equations, vol. 190 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1995. · Zbl 0821.34067
[4] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, vol. 74 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992. · Zbl 0752.34039
[5] I. Gy\Hori and G. Ladas, Oscillation Theory of Delay Differential Equations, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, NY, USA, 1991. · Zbl 0780.34048
[6] V. Kolmanovskiĭ and A. Myshkis, Applied Theory of Functional-Differential Equations, vol. 85 of Mathematics and Its Applications (Soviet Series), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992. · Zbl 0785.34005
[7] B. Dorociaková and R. Olach, “Existence of positive solutions of delay differential equations,” Tatra Mountains Mathematical Publications, vol. 43, pp. 63-70, 2009. · Zbl 1212.34232
[8] E. Kozakiewicz, “Über das asymptotische Verhalten der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument,” Wissenschaftliche Zeitschrift Der Humboldt Universitat Zu Berlin, Mathematisch-Naturwissenschaftliche Reihe, vol. 13, no. 4, pp. 577-589, 1964. · Zbl 0277.34085
[9] E. Kozakiewicz, “Zur Abschätzung des Abklingens der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument,” Wissenschaftliche Zeitschrift Der Humboldt Universitat Zu Berlin, Mathematisch-Naturwissenschaftliche Reihe, vol. 15, pp. 675-676, 1966. · Zbl 0221.34025
[10] E. Kozakiewicz, “Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument,” Mathematische Nachrichten, vol. 32, pp. 107-113, 1966. · Zbl 0182.15504 · doi:10.1002/mana.19660320112
[11] M. Pituk, “Special solutions of functional differential equations,” Studies of the University of \vZilina. Mathematical Series, vol. 17, no. 1, pp. 115-122, 2003. · Zbl 1063.34072
[12] Yu. A. Ryabov, “Certain asymptotic properties of linear systems with small time lag,” Trudy Sem. Teor. Diff. Uravnenii s Otklon. Argumentom Univ. Druzby Narodov Patrisa Lumumby, vol. 3, pp. 153-165, 1965 (Russian). · Zbl 0196.38701
[13] J. Diblík and M. Kúdel, “Two classes of asymptotically different positive solutions of the equation y\?(t)= - f(t,yt),” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 10, pp. 3702-3714, 2009. · Zbl 1169.34050 · doi:10.1016/j.na.2008.07.026
[14] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1993. · Zbl 0787.34002
[15] T. Wa\Dzewski, “Sur un principe topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles ordinaires,” Annales De La Societe Polonaise De Mathematique, vol. 20, pp. 279-313, 19487. · Zbl 0032.35001
[16] K. P. Rybakowski, “Wa\Dzewski’s principle for retarded functional differential equations,” Journal of Differential Equations, vol. 36, no. 1, pp. 117-138, 1980. · Zbl 0407.34056 · doi:10.1016/0022-0396(80)90080-7
[17] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities-vol. I. Ordinary Differential Equations, Academic Press, New York, NY, USA, 1969. · Zbl 0177.12403
[18] J. Diblík, “A criterion for existence of positive solutions of systems of retarded functional-differential equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 38, no. 3, pp. 327-339, 1999. · Zbl 0935.34061 · doi:10.1016/S0362-546X(98)00199-0
[19] J. Diblík, “Behaviour of solutions of linear differential equations with delay,” Archivum Mathematicum, vol. 34, no. 1, pp. 31-47, 1998. · Zbl 0914.34065
[20] J. Diblík and M. Rů\vzi, “Asymptotic behavior of solutions and positive solutions of differential delayed equations,” Functional Differential Equations, vol. 14, no. 1, pp. 83-105, 2007. · Zbl 1129.34050
[21] J. , “On a linear differential equation with a proportional delay,” Mathematische Nachrichten, vol. 280, no. 5-6, pp. 495-504, 2007. · Zbl 1128.34051 · doi:10.1002/mana.200410498
[22] I. Culáková, L. Hanu, and R. Olach, “Existence for positive solutions of second-order neutral nonlinear differential equations,” Applied Mathematics Letters, vol. 22, no. 7, pp. 1007-1010, 2009. · Zbl 1179.34087 · doi:10.1016/j.aml.2009.01.009
[23] L. K. Kikina and I. P. Stavroulakis, “A survey on the oscillation of solutions of first order delay difference equations,” Cubo, vol. 7, no. 2, pp. 223-236, 2005. · Zbl 1106.39008
[24] J. Ba\vstinec and J. Diblík, “Subdominant positive solutions of the discrete equation \Delta u(k+n)= - p(k)u(k),” Abstract and Applied Analysis, vol. 2004, pp. 461-470, 2004. · Zbl 1078.39004 · doi:10.1155/S1085337504306056
[25] L. Berezansky, E. Braverman, and O. Kravets, “Nonoscillation of linear delay difference equations with positive and negative coefficients,” Journal of Difference Equations and Applications, vol. 14, no. 5, pp. 495-511, 2008. · Zbl 1161.39004 · doi:10.1080/10236190701692273
[26] I. Gy\Hori and L. Horváth, “Asymptotic constancy in linear difference equations: limit formulae and sharp conditions,” Advances in Difference Equations, vol. 2010, Article ID 789302, 20 pages, 2010. · Zbl 1191.39001 · doi:10.1155/2010/789302
[27] S. Stević and K. S. Berenhaut, “The behavior of positive solutions of a nonlinear second-order difference equation,” Abstract and Applied Analysis, vol. 2008, Article ID 653243, 8 pages, 2008. · Zbl 1146.39018 · doi:10.1155/2008/653243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.