×

Oscillation and asymptotic behavior for \(n\)-th order nonlinear neutral delay dynamic equations on time scales. (English) Zbl 1210.34132

The author establishes a number of sufficient conditions for the oscillation and asymptotic behavior of \(n\)-th order nonlinear neutral delay dynamic equations on time scales. Four illustrative examples are included to show the significance of the obtained results.

MSC:

34N05 Dynamic equations on time scales or measure chains
34K11 Oscillation theory of functional-differential equations
34K40 Neutral functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hilger, S.: Analysis on measure chains–a unified approach to continuous and discrete calculus. Result. Math. 18, 18–56 (1990) · Zbl 0722.39001
[2] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001) · Zbl 0978.39001
[3] Spedding, V.: Taming Nature’s Numbers, pp. 28–31. New Scientist, London (2003)
[4] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) · Zbl 1025.34001
[5] Došlý, O., Hilgerb, S.: A necessary and sufficient condition for oscillation of the Sturm–Liouville dynamic equation on time scales. J. Comput. Appl. Math. 141, 147–158 (2002) · Zbl 1009.34033 · doi:10.1016/S0377-0427(01)00442-3
[6] Saker, S.H., Agarwal, R.P., O’Regan, D.: Oscillation of second-order damped dynamic equations on time scales. J. Math. Anal. Appl. 330, 1317–1337 (2007) · Zbl 1128.34022 · doi:10.1016/j.jmaa.2006.06.103
[7] Bohner, M., Saker, S.H.: Oscillation criteria for perturbed nonlinear dynamic equations. Math. Comput. Model. 40, 249–260 (2004) · Zbl 1112.34019 · doi:10.1016/j.mcm.2004.03.002
[8] Erbe, L., Peterson, A., Saker, S.H.: Hille and Nehari type criteria for third-order dynamic equations. J. Math. Anal. Appl. 329, 112–131 (2007) · Zbl 1128.39009 · doi:10.1016/j.jmaa.2006.06.033
[9] Erbe, L., Peterson, A., Saker, S.H.: Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales. J. Comput. Appl. Math. 181, 92–102 (2005) · Zbl 1075.39010 · doi:10.1016/j.cam.2004.11.021
[10] Zhang, B.G., Shanliang, Z.: Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 49, 599–609 (2005) · Zbl 1075.34061 · doi:10.1016/j.camwa.2004.04.038
[11] Bohner, M., Erbe, L., Peterson, A.: Oscillation for nonlinear second order dynamic equations on a time scale. J. Math. Anal. Appl. 301, 491–507 (2005) · Zbl 1061.34018 · doi:10.1016/j.jmaa.2004.07.038
[12] Şahiner, Y.: Oscillation of second-order delay differential equations on time scales. Nonlinear Anal. 63, 1073–1080 (2005)
[13] Han, Z., Sun, S., Shi, B.: Oscillation criteria for a class of second-order Emden–Fowler delay dynamic equations on time scales. J. Math. Anal. Appl. 334, 847–858 (2007) · Zbl 1125.34047 · doi:10.1016/j.jmaa.2007.01.004
[14] Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Anal. Appl. 262, 601–622 (2001) · Zbl 0997.34060 · doi:10.1006/jmaa.2001.7571
[15] Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic, Dordrecht (2000)
[16] Wong, P.J.Y., Agarwal, R.P.: Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations. Dyn. Syst. Appl. 4, 477–496 (1995) · Zbl 0840.34021
[17] Wong, P.J.Y., Agarwal, R.P.: Oscillatory behaviour of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198, 337–354 (1996) · Zbl 0855.34039 · doi:10.1006/jmaa.1996.0086
[18] Xu, Z., Xia, Y.: Integral averaging technique and oscillation of certain even order delay differential equations. J. Math. Anal. Appl. 292, 238–246 (2004) · Zbl 1062.34072 · doi:10.1016/j.jmaa.2003.11.054
[19] Xu, R., Meng, F.: Some new oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 182, 797–803 (2006) · Zbl 1115.34341 · doi:10.1016/j.amc.2006.04.042
[20] Chern, J.L., Lian, W.Ch., Yeh, C.C.: Oscillation criteria for second order half-linear differential equations with functional arguments. Publ. Math. (Debr.) 48, 209–216 (1996) · Zbl 1274.34193
[21] Agarwal, R.P., Shieh, S.L., Yeh, C.C.: Oscillation criteria for second-order retarded differential equations. Math. Comput. Model. 26, 1–11 (1997) · Zbl 0902.34061 · doi:10.1016/S0895-7177(97)00141-6
[22] Džurina, J., Stavroulakis, I.P.: Oscillation criteria for second-order delay differential equations. Appl. Math. Comput. 140, 445–453 (2003) · Zbl 1043.34071 · doi:10.1016/S0096-3003(02)00243-6
[23] Sun, Y.G., Meng, F.W.: Note on the paper of Dzurina and Stavroulakis. Appl. Math. Comput. 174, 1634–1641 (2006) · Zbl 1096.34048 · doi:10.1016/j.amc.2005.07.008
[24] Jeroš, J., Kusano, T.: Oscillation properties of first order nonlinear functional differential equations of neutral type. Diff. Integral Equ. 4, 425–436 (1991) · Zbl 0729.34054
[25] Meng, F., Xu, R.: Oscillation criteria for certain even order quasi-linear neutral differential equations with deviating arguments. Appl. Math. Comput. 190, 458–464 (2007) · Zbl 1131.34319 · doi:10.1016/j.amc.2007.01.040
[26] Agarwal, R.P., O’Regan, D., Saker, S.H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. Appl. 300, 203–217 (2004) · Zbl 1062.34068 · doi:10.1016/j.jmaa.2004.06.041
[27] Saker, S.H.: Oscillation of second-order nonlinear neutral delay dynamic equations. J. Comput. Appl. Math. 187, 123–141 (2006) · Zbl 1097.39003 · doi:10.1016/j.cam.2005.03.039
[28] Wu, H., Zhuang, R., Mathsen, R.M.: Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl. Math. Comput. 178, 321–331 (2006) · Zbl 1104.39009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.