zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterative methods for equilibrium and fixed point problems for nonexpansive semigroups in Hilbert spaces. (English) Zbl 1210.47080
A continuous semigroup $T(s)$, $s\geq0$, in a Hilbert space $H$ is called nonexpansive if $\|T(s)x-T(s)y\|\leq\|x-y\|$ for arbitrary $x,y$ in $H$. For a bifunction $G:H\times S\rightarrow\mathbb{R}$, $EP(G)$ denotes the set of equilibrium points, i.e., all $x$ such that $G(x,y)\geq0$ for all $y\in H$. The present paper studies iterative methods of finding solutions to a variational problem among equilibrium points, which are fixed points of $T$. The authors present two iterative constructions, which they call implicit and explicit. In the implicit iterative construction, a pair of continuous sequences $x_t,$ $ u_t\in H$ is defined as solution to $$ G(u_t, y) +\frac{1}{r_t}\langle y-u_t, u_t-x_t\rangle\geq 1, \quad \forall y\in H $$ and $$ x_t = t\gamma f(x_t)+(I-tA)\frac1{\lambda_t}\int_0^{\lambda_t} T(s)u_t\,ds. $$ Here, $0<t<1$ and $A$ is a strongly positive bounded linear operator. The explicit iterations are defined by the system $$ x_{n+1} = \alpha_n\gamma f(x_n)+(I-\alpha_n A)\frac1{s_n}\int_0^{s_n}t(s)u_n\, ds $$ and $$ G(u_n, y)+\frac1{r_n}\langle y-u_n, u_n-x_n\rangle \geq 0, \quad \forall y\in H. $$ It is demonstrated that, with an appropriate definition of the coefficients $r_t, \lambda_t, \alpha_n, s_n$, the implicit sequences $x_t, u_t$, and the the explicit sequences $x_n$, $u_n$, both converge strongly to the unique solution to variational inequality $$ \langle (\gamma f-A)z, p-z \rangle \leq0 $$ on the set of fixed points of the semigroup $T$ belonging to $EP(G)$. No examples illustrate the theoretical results.

47H20Semigroups of nonlinear operators
47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
47J20Inequalities involving nonlinear operators
Full Text: DOI
[1] Marino, G., Xu, H.K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318, 43--52 (2006) · Zbl 1095.47038 · doi:10.1016/j.jmaa.2005.05.028
[2] Moudafi, A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46--55 (2000) · Zbl 0957.47039 · doi:10.1006/jmaa.1999.6615
[3] Moudafi, A.: On finite and strong convergence of a proximal method for equilibrium problems. Numer. Funct. Anal. Optim. 28(11), 1347--1354 (2007) · Zbl 1138.90020 · doi:10.1080/01630560701766684
[4] Plubtieng, S., Punpaeng, R.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 336, 455--469 (2007) · Zbl 1127.47053 · doi:10.1016/j.jmaa.2007.02.044
[5] Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331(1), 506--515 (2007) · Zbl 1122.47056 · doi:10.1016/j.jmaa.2006.08.036
[6] Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659--678 (2003) · Zbl 1043.90063 · doi:10.1023/A:1023073621589
[7] Browder, F.E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banch spaces. Arch. Ration. Mech. Anal. 24, 82--89 (1967) · Zbl 0148.13601 · doi:10.1007/BF00251595
[8] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123--145 (1994) · Zbl 0888.49007
[9] Moudafi, A., Théra, M.: Proximal and dynamical approaches to equilibrium problems. In: Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187--201. Springer, Berlin (1999) · Zbl 0944.65080
[10] Shimizu, T., Takahashi, W.: Strong convergence to common fixed points of families of nonexpansive mappings. J. Math. Anal. Appl. 211, 71--83 (1997) · Zbl 0883.47075 · doi:10.1006/jmaa.1997.5398
[11] Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2, 1--17 (2002)
[12] Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming using proximal-like algorithms. Math. Program. 78, 29--41 (1997) · doi:10.1016/S0025-5610(96)00071-8
[13] Brezis, H.: Analyse Fonctionelle. Masson, Paris (1983)
[14] Moudafi, A.: Krasnoselski-Mann iteration for Hierarchical fixed-point problems. Inverse Probl. 23, 1--6 (2007) · Zbl 1128.47060 · doi:10.1088/0266-5611/23/4/015