×

Heegaard splittings and pseudo-Anosov maps. (English) Zbl 1210.57019

Heegaard splittings of \(3\)-manifolds have been studied mostly using topological or combinatorial methods. This paper is one of the first attempts to use the techniques of hyperbolic geometry for studying these objects.
The authors consider \(3\)-manifolds \(M_n\) obtained by attaching two handlebodies (of genus \(g\) greater than \(1\)) by iterations of pseudo-Anosov maps \(f^n\) along their boundaries. It is assumed that the stable lamination of \(f\) is not contained in the closure of the set of meridians in the projective lamination space. They show that for any pseudo-Anosov map \(f\), if we take sufficiently large \(n\), then \(M_n\) admits a negatively curved metric whose sectional curvature is pinched within a small interval containing \(-1\). They also show that a geometric limit of \(M_n\) is homeomorphic to either a handlebody of genus \(g\) or a product open-interval bundle over the closed surface of genus \(g\).
There are several applications of these theorems. One of them claims that the rank of \(\pi_1(M_n)\) is equal to \(g\) for sufficiently large \(n\), and every minimal generating set of \(\pi_1(M_n)\) is Nielsen equivalent to one of the two standard generating sets.
The proofs of the main theorems use results and techniques which were recently developed in the field of Kleinian groups and hyperbolic 3-manifolds.

MSC:

57M50 General geometric structures on low-dimensional manifolds
57M07 Topological methods in group theory
57N10 Topology of general \(3\)-manifolds (MSC2010)
30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
Full Text: DOI

References:

[1] I. Agol, Tameness of hyperbolic 3-manifolds, preprint (2004).
[2] R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, 1992. · Zbl 0768.51018
[3] Bestvina M.: Degenerations of the hyperbolic space. Duke Math. J. 56, 143–161 (1988) · Zbl 0652.57009 · doi:10.1215/S0012-7094-88-05607-4
[4] Bonahon F.: Cobordism of automorphisms of surfaces, Ann. Sci. Ec. Norm. Super. IV Ser. 16, 237–270 (1983) · Zbl 0535.57016
[5] Bonahon F.: Bouts des variété hyperboliques de dimension 3. Ann. of Math. 124, 71–158 (1986) · Zbl 0671.57008 · doi:10.2307/1971388
[6] Brock J.: Continuity of Thurston’s length function. Geom. Funct. Anal. 10, 741–797 (2000) · Zbl 0968.57011 · doi:10.1007/PL00001637
[7] D. Calegari, D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, preprint (2004). · Zbl 1090.57010
[8] Canary R.D.: Ends of hyperbolic 3-manifolds. J. Amer. Math. Soc. 6, 1–35 (1993) · Zbl 0810.57006
[9] Canary R.D.: A covering theorem for hyperbolic 3-manifolds and its applications. Topology 35, 751–778 (1996) · Zbl 0863.57010 · doi:10.1016/0040-9383(94)00055-7
[10] R.D. Canary, D.B.A. Epstein, P. Green, Notes on notes of Thurston, in ”Analytical and geometric aspects of hyperbolic space”, London Math. Soc. Lecture Note Ser. 111, Cambridge University Press (1987), 3–92. · Zbl 0612.57009
[11] Casson A., Gordon C.: Reducing Heegaard splittings. Topology Appl. 27, 275–283 (1987) · Zbl 0632.57010 · doi:10.1016/0166-8641(87)90092-7
[12] Choi H.I., Schoen R.: The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature. Invent. Math. 81, 387–394 (1985) · Zbl 0577.53044 · doi:10.1007/BF01388577
[13] Easson V.R.: Surface subgroups and handlebody attachments. Geom. Topol. 10, 557–591 (2006) (electronic) · Zbl 1128.57019 · doi:10.2140/gt.2006.10.557
[14] Hartshorn K.: Heegaard splittings of Haken manifolds have bounded distance. Pacific J. Math. 204, 61–75 (2002) · Zbl 1065.57021 · doi:10.2140/pjm.2002.204.61
[15] J. Hass, A. Thompson, W. Thurston, Stabilization of Heegaard splittings, preprint; arXiv: 0802.2145. · Zbl 1177.57018
[16] Hempel J.: 3-manifolds as viewed from the curve complex. Topology 40, 631–657 (2001) · Zbl 0985.57014 · doi:10.1016/S0040-9383(00)00033-1
[17] Kerckhoff S.: The measure of the limit set of the handlebody group. Topology 29, 27–40 (1990) · Zbl 0713.57016 · doi:10.1016/0040-9383(90)90023-D
[18] Kleineidam G., Souto J.: Algebraic convergence of function groups. Comment. Math. Helv. 77, 244–269 (2002) · Zbl 1008.30026 · doi:10.1007/s00014-002-8339-x
[19] G. Kleineidam, J. Souto, Ending laminations in theMasur domain, in ”Kleinian Groups and Hyperbolic 3-Manifolds,” Poceeddings of Warwick Conference 2001, London Math. Soc. (2003), 105–129. · Zbl 1052.57020
[20] Lackenby M.: Attaching handlebodies to 3-manifolds. Geom. Topol. 6, 889–904 (2002) · Zbl 1021.57010 · doi:10.2140/gt.2002.6.889
[21] Lackenby M.: Heegaard splittings, the virtually Haken conjecture and Property {\(\tau\)}. Invent. Math. 164, 317–359 (2006) · Zbl 1110.57015 · doi:10.1007/s00222-005-0480-x
[22] Masur H.A.: Measured foliations and handlebodies. Ergodic Theory Dynam. Systems 6, 99–116 (1986) · Zbl 0628.57010 · doi:10.1017/S014338570000331X
[23] K. Matsuzaki, M. Taniguchi, Hyperbolic Manifolds and Kleinian Groups, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, (1998). · Zbl 0892.30035
[24] McMullen C.: Renormalization and 3-Manifolds Which Fiber over the Circle. Princeton University Press, Princeton, NJ (1996) · Zbl 0860.58002
[25] Minsky Y.N.: Bounded geometry for Kleinian groups. Invent. Math. 146, 143–192 (2001) · Zbl 1061.37026 · doi:10.1007/s002220100163
[26] H. Namazi, Heegaard splittings and hyperbolic geometry, Dissertation Research, Stony Brook University, 2005.
[27] J.-P. Otal, Courants géodésiques et produits libres, Thése d’Etat, Université Paris-Sud, Orsay, 1988.
[28] Otal J.-P.: Sur la dégénerescence des groupes de Schottky. Duke Math. J. 74, 777–792 (1994) · Zbl 0828.57008 · doi:10.1215/S0012-7094-94-07429-2
[29] J.-P. Otal, Théor’eme d’hyperbolisation pour les variété fibrées de dimension 3, Astérisque, Société Mathématique de France, (1996).
[30] Paulin F.: Topologie de Gromov équivariante, structures hyperboliques et arbres réels. Invent. Math. 94, 53–80 (1988) · Zbl 0673.57034 · doi:10.1007/BF01394344
[31] J. Pérez, A. Ros, Properly embedded minimal surfaces with finite total curvature, in ”The global theory of minimal surfaces in flat spaces”, Springer Lecture Notes in Math. 1775 (2002), 15–66. · Zbl 1028.53005
[32] Sacks J., Uhlenbeck K.: Minimal immersions of closed riemann surfaces. Trans. Amer. Math. Soc. 271, 639–652 (1982) · Zbl 0527.58008 · doi:10.1090/S0002-9947-1982-0654854-8
[33] Scharlemann M., Tomova M.: Alternate Heegaard genus bounds distance. Geom. Topol. 10, 593–617 (2006) (electronic) · Zbl 1128.57022 · doi:10.2140/gt.2006.10.593
[34] Schoen R., Yau S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Annals of Math. 110, 127–142 (1979) · Zbl 0431.53051 · doi:10.2307/1971247
[35] P. Scott, Compact submanifolds of 3-manifolds, Journal London Math. Soc. 7 (1973), . · Zbl 0266.57001
[36] Skora R.: Splittings of surfaces. Bull. Amer. Math. Soc. 23, 85–90 (1990) · Zbl 0708.30044 · doi:10.1090/S0273-0979-1990-15907-5
[37] Skora R.: Splittings of surfaces. J. Amer. Math. Soc. 9, 605–616 (1996) · Zbl 0877.57002 · doi:10.1090/S0894-0347-96-00205-6
[38] J. Souto, The rank of the fundamental group of hyperbolic 3-manifolds fibering over the circle, in ”The Zieschang Gedenkschrift”, Geometry and Topology Monographs 14 (2008). · Zbl 1144.57017
[39] J. Souto, Geometry of Heegaard splittings, in preparation.
[40] Thurston W.P.: Hyperbolic structures on 3-manifolds I: Deformation of acylindrical manifolds. Annals of Math. 124, 203–246 (1986) · Zbl 0668.57015 · doi:10.2307/1971277
[41] W.P. Thurston, Hyperbolic Structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over he circle, preprint; math.GT/9801045
[42] G. Tian, A pinching theorem on manifolds with negative curvature, Proceedings of International Conference on Algebraic and Analytic Geometry, Tokyo (1990), .
[43] Waldhausen F.: Heegaard–Zerlegungen der 3-Sphäre. Topology 7, 195–203 (1968) · Zbl 0157.54501 · doi:10.1016/0040-9383(68)90027-X
[44] White M.: Injectivity radius and fundamental groups of hyperbolic 3-manifolds. Comm. Anal. Geom. 10, 377–395 (2002) · Zbl 1012.57020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.