×

Looking forwards and backwards in the multi-allelic neutral Cannings population model. (English) Zbl 1210.60078

The author considers the multi-allelic neutral exchangeable Cannings model with fixed population size and nonoverlapping generations. The Markov chain is studied, which describes the allelic composition of the population forward in time. Explicit expressions are derived for the so-called backward matrix of the multi-allelic Cannings model, the probabilities of the matrix being expressed in terms of the offspring distribution. The results are applied to fundamental multi-allelic Cannings models such as Moran model, Wright-Fisher model, Kimura model, Karlin and McGregor model, and uniform model.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
92D10 Genetics and epigenetics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cannings, C. (1974). The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid models. Adv. Appl. Prob. 6 , 260–290. JSTOR: · Zbl 0284.60064 · doi:10.2307/1426293
[2] Cannings, C. (1975). The latent roots of certain Markov chains arising in genetics: a new approach. II. Further haploid models. Adv. Appl. Prob. 7 , 264–282. JSTOR: · Zbl 0339.60067 · doi:10.2307/1426077
[3] Felsenstein, J. (1971). The rate of loss of multiple alleles in finite haploid populations. Theoret. Pop. Biol. 2 , 391–403. · Zbl 0234.92010 · doi:10.1016/0040-5809(71)90028-1
[4] Gladstien, K. (1976). Loss of alleles in a haploid population with varying environment. Theoret. Pop. Biol. 10 , 383–394. · Zbl 0346.92014 · doi:10.1016/0040-5809(76)90025-3
[5] Gladstien, K. (1977). Haploid populations subject to varying environment: the characteristic values and the rate of loss of alleles. SIAM J. Appl. Math. 32 , 778–783. JSTOR: · Zbl 0356.92014 · doi:10.1137/0132065
[6] Gladstien, K. (1977). Subdivided populations: the characteristic values and rate of loss of alleles. J. Appl. Prob. 14 , 241–248. JSTOR: · Zbl 0366.92011 · doi:10.2307/3212995
[7] Gladstien, K. (1978). The characteristic values and vectors for a class of stochastic matrices arising in genetics. SIAM J. Appl. Math. 34 , 630–642. JSTOR: · Zbl 0386.92004 · doi:10.1137/0134050
[8] Huillet, T. and Möhle, M. (2009). Duality and asymptotics for a class of nonneutral discrete Moran models. J. Appl. Prob. 46 , 866–893. · Zbl 1181.92067 · doi:10.1239/jap/1253279856
[9] Karlin, S. and McGregor, J. (1965). Direct product branching processes and related induced Markoff chains. I. Calculations of rates of approach to homozygosity. In Proc. Internat. Res. Sem. , Springer, New York, pp. 111–145. · Zbl 0294.60064
[10] Kimura, M. (1957). Some problems of stochastic processes in genetics. Ann. Math. Statist. 28 , 882–901. · Zbl 0085.14101 · doi:10.1214/aoms/1177706791
[11] Liggett, T. M. (1985). Interacting Particle Systems . Springer, New York. · Zbl 0559.60078
[12] Möhle, M. (1999). The concept of duality and applications to Markov processes arising in neutral population genetics models. Bernoulli 5 , 761–777. · Zbl 0942.92020 · doi:10.2307/3318443
[13] Moran, P. A. P. (1958). Random processes in genetics. Proc. Camb. Phil. Soc. 54 , 60–71. · Zbl 0091.15701 · doi:10.1017/S0305004100033193
[14] Wright, S. (1931). Evolution in Mendelian populations. Genetics 16 , 97–159.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.