zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximate solution of the fractional advection-dispersion equation. (English) Zbl 1210.65168
The solution of the advection-dispersion equation of fractional order $$\frac{\partial^{\alpha}u(x,t)}{\partial t^{\alpha}}+ v(x,t)D_{x}^{\nu}u(x,t)-k(x,t)D_{x}^{\beta}u(x,t)=F(x,t)$$ with homogeneous initial and boundary conditions is presented in the form of Fourier series. The approximate solution is obtained by truncating this series.

65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
42C10Fourier series in special orthogonal functions
35L50First order hyperbolic systems, boundary value problems
35R11Fractional partial differential equations
35C10Series solutions of PDE
46E22Hilbert spaces with reproducing kernels
Full Text: DOI
[1] Meerschaert, M. M.; Scheffler, H. P.: Semistable Lévy motion, Frac. calc. Appl. anal. 5, 27-54 (2002) · Zbl 1032.60043
[2] Meerschaert, M.; Benson, D.; Scheffler, H. P.; Baeumer, B.: Stochastic solution of space -- time fractional diffusion equations, Phys. rev. E 65, 1103-1106 (2002) · Zbl 1244.60080
[3] West, B.; Bologna, M.; Grigolini, P.: Physics of fractal operators, (2003)
[4] Zaslavsky, G.: Hamiltonian chaos and fractional dynamics, (2005) · Zbl 1083.37002
[5] Gorenflo, R.; Mainardi, F.; Scalas, E.; Raberto, M.: Fractional calculus and continuous-time finance. III. the diffusion limit, Trends math., 171-180 (2001) · Zbl 1138.91444
[6] Raberto, M.; Scalas, E.; Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study, Physica A 314, 749-755 (2002) · Zbl 1001.91033 · doi:10.1016/S0378-4371(02)01048-8
[7] Sabatelli, L.; Keating, S.; Dudley, J.; Richmond, P.: Waiting time distributions in financial markets, Eur. phys. J. B 27, 273-275 (2002)
[8] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[9] Machado, J. T.: Discrete time fractional-order controllers, Frac. calc. Appl. anal. 4, 47-66 (2001) · Zbl 1111.93307
[10] Baeumer, B.; Meerschaert, M. M.; Benson, D. A.; Wheatcraft, S. W.: Subordinated advection -- dispersion equation for contaminant transport, Water resource res. 37, 1543-1550 (2001)
[11] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Wheatcraft, S. W.: Eulerian derivation of the fractional advection -- dispersion equation, J. contaminant hydrol. 48, 69-88 (2001)
[12] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Baeumer, B.: Multiscaling fractional advection -- dispersion equations and their solutions, Water resource res. 39, 1022-1032 (2003)
[13] Reimus, P.; Pohll, G.; Mihevc, T.; Chapman, J.; Haga, M.; Lyles, B.; Kosinski, S.; Niswonger, R.; Sanders, P.: Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test, Water resour. Res. 39, 1356-1370 (2003)
[14] Hilfer, R.: Applications of fractional calculus in physics, (2000) · Zbl 0998.26002
[15] Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport, Phys. rep. 371, 461-580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[16] Metzler, R.; Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. physics A 37, R161-R208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[17] Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. rep. 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[18] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M.: Application of a fractional advection -- dispersion equation, Water resour. Res. 36, No. 6, 1403-1412 (2000)
[19] Liu, F.; Anh, V.; Turner, I.; Zhuang, P.: Time fractional advection dispersion equation, J. appl. Math. comput. 13, 233-245 (2003) · Zbl 1068.26006 · doi:10.1007/BF02936089
[20] Liu, F.; Anh, V.; Turner, I.: Numerical solution of space fractional Fokker -- Planck equation, J. comput. Appl. math. 166, 209-219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[21] Huang, F.; Liu, F.: The fundamental solution of the space -- time fractional advection -- dispersion equation, J. appl. Math. comput. 19, 233-245 (2005)
[22] Momani, S.; Odibat, Z.: Numerical solutions of the space -- time fractional advection -- dispersion equation, Numer. methods partial differential equations 24, No. 6, 1416-1429 (2008) · Zbl 1148.76044 · doi:10.1002/num.20324
[23] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K.: Stability and convergence of the difference methods for the space -- time fractional advection -- diffusion equation, Appl. math. Comput. 191, 12-20 (2007) · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[24] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[25] Ervin, J. S.; Roop, J. P.: Variational solution of fractional advection dispersion equations on bounded domains in rd, Numer. methods partial differential equations 23, No. 2, 256-281 (2007) · Zbl 1117.65169 · doi:10.1002/num.20169
[26] Hackbusch, Wolfgang: Integral equations: theory and numerical treatment, International series of numerical mathematics (1995) · Zbl 0823.65139
[27] Cui, Minggen; Lin, Yingzhen: Nonlinear numerical analysis in the reproducing kernel space, (2009) · Zbl 1165.65300