##
**mBm-based scalings of traffic propagated in internet.**
*(English)*
Zbl 1210.68027

Scaling phenomena of the Internet traffic gain people’s interests, ranging from computer scientists to statisticians. There are two types of scales. One is small-time scaling and the other large-time one. Tools to separately describe them are desired in computer communications, such as performance analysis of network systems. Conventional tools, such as the standard fractional Brownian motion (fBm), or its increment process, or the standard multifractional fBm (mBm) indexed by the local Hölder function \(H(t)\) may not be enough for this purpose.

In this paper, we propose to describe the local scaling of traffic by using \(D(t)\) on a point-by-point basis, and to measure the large-time scaling of traffic by using \(E(H(t))\) on an interval-by-interval basis, where \(E\) denotes the expectation operator. Since \(E(H(t))\) is a constant within an observation interval while \(D(t)\) is random in general, they are uncorrelated with each other. Thus, our proposed method can be used to separately characterize the small-time scaling phenomenon and the large one of traffic, providing a new tool to investigate the scaling phenomena of traffic.

In this paper, we propose to describe the local scaling of traffic by using \(D(t)\) on a point-by-point basis, and to measure the large-time scaling of traffic by using \(E(H(t))\) on an interval-by-interval basis, where \(E\) denotes the expectation operator. Since \(E(H(t))\) is a constant within an observation interval while \(D(t)\) is random in general, they are uncorrelated with each other. Thus, our proposed method can be used to separately characterize the small-time scaling phenomenon and the large one of traffic, providing a new tool to investigate the scaling phenomena of traffic.

### MSC:

68M11 | Internet topics |

68M20 | Performance evaluation, queueing, and scheduling in the context of computer systems |

### Keywords:

scaling phenomena of traffic; internet; small-time scaling; large-time scaling; standard multifractional Brownian motion (mBm)### Software:

longmemo
PDFBibTeX
XMLCite

\textit{M. Li} et al., Math. Probl. Eng. 2011, Article ID 389803, 21 p. (2011; Zbl 1210.68027)

### References:

[1] | M. Li and W. Zhao, “Sufficient condition for min-plus deconvolution to be closed in the service-curve set in computer networks,” International Journal of Computers, vol. 1, no. 3, pp. 163-166, 2007. |

[2] | M. Li, “Recent results on the inverse of min-plus convolution in computer networks,” International Journal of Engineering and Interdisciplinary Mathematics, vol. 1, no. 1, pp. 1-9, 2009. · doi:10.1007/978-0-387-75847-3_1 |

[3] | M. Li and P. Borgnat, “Foreword to the special issue on traffic modeling, its computations and applications,” Telecommunication Systems, vol. 43, no. 3-4, pp. 145-146, 2010. · doi:10.1007/s11235-009-9204-7 |

[4] | H. Michiel and K. Laevens, “Teletraffic engineering in a broad-band era,” Proceedings of the IEEE, vol. 85, no. 12, pp. 2007-2033, 1997. · doi:10.1109/5.650182 |

[5] | W. Willinger, R. Govindan, S. Jamin, V. Paxson, and S. Shenker, “Scaling phenomena in the internet: critically examining criticality,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 2573-2580, 2002. · doi:10.1073/pnas.012583099 |

[6] | A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz, “The changing nature of network traffic: scaling phenomena,” ACM SIGCOMM Computer Communication Review, vol. 28, no. 2, pp. 5-29, 1998. |

[7] | Y. Jiang, “Per-domain packet scale rate guarantee for expedited forwarding,” IEEE/ACM Transactions on Networking, vol. 14, no. 3, pp. 630-643, 2006. · doi:10.1109/TNET.2006.876177 |

[8] | K. Papagiannaki, R. Cruz, and C. Diot, “Network performance monitoring at small time scales,” in Proceedings of the 2003 ACM SIGCOMM Internet Measurement Conference (IMC ’03), pp. 295-300, Miami, Fla, USA, October 2003. |

[9] | V. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson modeling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226-244, 1995. · doi:10.1109/90.392383 |

[10] | W. Stalling, High-Speed Networks: TCP/IP and ATM Design Principles, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2002. |

[11] | D. McDysan, QoS & Traffic Management in IP & ATM Networks, McGraw-Hill, Chicago, Ill, USA, 2000. |

[12] | J. M. Pitts and J. A. Schormans, Introduction to ATM Design and Performance: with Applications Analysis Software, John Wiley & Sons, New York, NY, USA, 2nd edition, 2000. |

[13] | W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar nature of Ethernet traffic (extended version),” IEEE/ACM Transactions on Networking, vol. 2, no. 1, pp. 1-15, 1994. · doi:10.1109/90.282603 |

[14] | J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, “Long-range dependence in variable-bit-rate video traffic,” IEEE Transactions on Communications, vol. 43, no. 234, pp. 1566-1579, 1995. · doi:10.1109/26.380206 |

[15] | B. Tsybakov and N. D. Georganas, “Self-similar processes in communications networks,” IEEE Transactions on Information Theory, vol. 44, no. 5, pp. 1713-1725, 1998. · Zbl 0988.90003 · doi:10.1109/18.705538 |

[16] | W. Willinger and V. Paxson, “Where mathematics meets the internet,” Notices of the American Mathematical Society, vol. 45, no. 8, pp. 961-970, 1998. · Zbl 0973.00523 |

[17] | A. Adas, “Traffic models in broadband networks,” IEEE Communications Magazine, vol. 35, no. 7, pp. 82-89, 1997. |

[18] | A. Ayache, S. Cohen, and J. Levy Vehel, “Covariance structure of Multifractional Brownian motion, with application to long range dependence,” in Proceedings of the IEEE Interntional Conference on Acoustics, Speech, and Signal Processing (ICASSP ’00), vol. 6, pp. 3810-3813, June 2000. |

[19] | M. Li and S. C. Lim, “Modeling network traffic using generalized Cauchy process,” Physica A, vol. 387, no. 11, pp. 2584-2594, 2008. · doi:10.1016/j.physa.2008.01.026 |

[20] | M. Li and S. C. Lim, “Power spectrum of generalized Cauchy process,” Telecommunication Systems, vol. 43, no. 3-4, pp. 219-222, 2010. · doi:10.1007/s11235-009-9209-2 |

[21] | M. Li, Teletraffic Modeling Relating to Generalized Cauchy Process: Empirical Study, VDM, Saarbrücken, Germany, 2009. |

[22] | M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, Article ID 025007, 10 pages, 2010. · Zbl 1191.90013 · doi:10.1088/0031-8949/81/02/025007 |

[23] | M. Li, “Self-Similarity and long-range dependence in teletraffic,” in Proceedings of the 9th WSEAS International Conference on Multimedia Systems and Signal Processing, pp. 19-24, Hangzhou, China, May 2009. |

[24] | M. Li, “Essay on teletraffic models (I),” in Proceedings of the 9th WSEAS International Conference on Applied Computer and Computational Science (ACACOS ’10), pp. 130-135, Hangzhou, China, April 2010. |

[25] | M. Li, S. C. Lim, and H. Feng, “A novel description of multifractal phenomenon of network traffic based on generalized cauchy process,” in Proceedings of the 7th International Conference on Computational Science (ICCS ’07), Y. Shi, van Albada, Sloot, and Dongarra, Eds., vol. 4489 of Lecture Notes in Computer Science, pp. 1-9, Springer, May 2007. |

[26] | R. L. Cruz, “A calculus for network delay-I: network elements in isolation,” IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 114-131, 1991. · Zbl 0712.94028 · doi:10.1109/18.61109 |

[27] | R. L. Cruz, “A calculus for network delay. II. Network analysis,” IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 132-141, 1991. · Zbl 0712.94029 · doi:10.1109/18.61110 |

[28] | M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368-1372, 2010. · doi:10.1109/TPDS.2009.162 |

[29] | A. Raha, S. Kamat, X. Jia, and W. Zhao, “Using traffic regulation to meet end-to-end deadlines in ATM networks,” IEEE Transactions on Computers, vol. 48, no. 9, pp. 917-935, 1999. · doi:10.1109/12.795221 |

[30] | Y.-M. Jiang and Y. Liu, Stochastic Network Calculus, Springer, Berlin, Germany, 2008. |

[31] | J.-Y. Le Boudec and P. Thiran, Network Calculus, vol. 2050 of Lecture Notes in Computer Science, Springer, Berlin, German, 2001. · Zbl 0974.90003 · doi:10.1007/3-540-45318-0 |

[32] | A. K. Erlang, “Telefon-ventetider. et stykke sandsynlighedsregning,” Matematisk Tidsskrift B, pp. 25-42, 1920. |

[33] | E. Brockmeyer, H. L. Halstrøm, and A. Jensen, “The life and works of A. K. Erlang,” Transactions of the Danish Academy of Technical Sciences, vol. 1948, no. 2, pp. 23-100, 1948. · Zbl 0033.05101 |

[34] | Z. Bojkovic, M. Bakmaz, and B. Bakmaz, “Originator of teletraffic theory,” Proceedings of the IEEE, vol. 98, no. 1, pp. 123-127, 2009. · doi:10.1109/JPROC.2009.2035167 |

[35] | F. Le Gall, “One moment model for telephone traffic,” Applied Mathematical Modelling, vol. 6, no. 6, pp. 415-423, 1982. · Zbl 0504.90015 · doi:10.1016/S0307-904X(82)80002-4 |

[36] | P. M. Lin, B. J. Leon, and C. R. Stewart, “Analysis of circuit-switched networks employing originating-office control with spill-forward,” IEEE Transactions on Communications, vol. 26, no. 6, pp. 754-765, 1978. · Zbl 0386.94023 · doi:10.1109/TCOM.1978.1094162 |

[37] | D. R. Manfield and T. Downs, “On the one-moment analysis of telephone traffic networks,” IEEE Transactions on Communications, vol. 27, no. 8, pp. 1169-1174, 1979. · Zbl 0402.90040 · doi:10.1109/TCOM.1979.1094530 |

[38] | M. Reiser, “Performance evaluation of data communication systems,” Proceedings of the IEEE, vol. 70, no. 2, pp. 171-196, 1982. · doi:10.1109/PROC.1982.12261 |

[39] | J. D. Gibson, Ed., The Communications Handbook, IEEE Press, 1997. · Zbl 0902.94001 |

[40] | R. B. Cooper, Introduction to Queueing Theory, North-Holland, New York, NY, USA, 2nd edition, 1981. · Zbl 0486.60002 |

[41] | H. Akimaru and K. Kawashima, Teletraffic: Theory and Applications, Springer, Berlin, Germany, 1993. |

[42] | V. Paxson, Measurements and analysis of end-to-end internet dynamics, Ph.D. thesis, University of California, Berkeley, Calif, USA, 1997. |

[43] | V. Paxson, “Growth trends in wide-area TCP connections,” IEEE Network, vol. 8, no. 4, pp. 8-17, 1994. |

[44] | W. A. Fuller, Introduction to Statistical Time Series, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, New York, NY, USA, 2nd edition, 1996. · Zbl 0851.62057 |

[45] | G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis, Prentice Hall, Englewood Cliffs, NJ, USA, 3rd edition, 1994. · Zbl 0858.62072 |

[46] | S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0832.94001 |

[47] | J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedure, John Wiley & Sons, New York, NY, USA, 3rd edition, 2000. · Zbl 1187.62204 |

[48] | A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill Series in Electrical Engineering. Communications and Information Theory, McGraw-Hill, New York, NY, USA, 1997. · Zbl 0191.46704 |

[49] | J. L. Doob, “The elementary Gaussian processes,” Annals of Mathematical Statistics, vol. 15, pp. 229-282, 1944. · Zbl 0060.28907 · doi:10.1214/aoms/1177731234 |

[50] | J. Beran, Statistics for Long-Memory Processes, vol. 61 of Monographs on Statistics and Applied Probability, Chapman and Hall, New York, NY, USA, 1994. · Zbl 0869.60045 |

[51] | J. Beran, “Statistical methods for data with long-range dependence,” Statistical Science, vol. 7, no. 4, pp. 404-416, 1992. · doi:10.1214/ss/1177011122 |

[52] | N. C. Nigam, Introduction to Random Vibrations, The MIT Press, Cambridge, Mass, USA, 1983. |

[53] | J. D. Murray, Asymptotic Analysis, vol. 48 of Applied Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1984. · Zbl 0529.41001 |

[54] | P. Abry, P. Borgnat, F. Ricciato, A. Scherrer, and D. Veitch, “Revisiting an old friend: on the observability of the relation between long range dependence and heavy tail,” Telecommunication Systems, vol. 43, no. 3-4, pp. 147-165, 2010. · doi:10.1007/s11235-009-9205-6 |

[55] | R. P. Kanwal, Generalized Functions: Theory and Applications, Birkhäuser, Boston, Mass, USA, 3rd edition, 2004. · Zbl 1069.46001 |

[56] | I. M. Gelfand and K. Vilenkin, Generalized Functions, vol. 1, Academic Press, New York, NY, USA, 1964. |

[57] | M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002 · doi:10.1155/2010/157264 |

[58] | G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Stochastic Modeling, Chapman & Hall, New York, NY, USA, 1994. · Zbl 0925.60027 |

[59] | P. Flandrin, “On the spectrum of fractional Brownian motions,” IEEE Transactions on Information Theory, vol. 35, no. 1, pp. 197-199, 1989. · doi:10.1109/18.42195 |

[60] | I. Csabai, “1/f noise in computer network traffic,” Journal of Physics A, vol. 27, no. 12, article 004, pp. L417-L421, 1994. · doi:10.1088/0305-4470/27/12/004 |

[61] | Y. G. Sinaĭ, “Self-similar probability distributions,” Theory of Probability and Its Applications, vol. 21, no. 1, pp. 63-80, 1976. · Zbl 0358.60031 · doi:10.1137/1121005 |

[62] | M. Li and S. C. Lim, “A rigorous derivation of power spectrum of fractional Gaussian noise,” Fluctuation and Noise Letters, vol. 6, no. 4, pp. C33-C36, 2006. · doi:10.1142/S0219477506003604 |

[63] | M. Li, W. Zhao, and S. Chen, “FGN based telecommunication traffic models,” WSEAS Transactions on Computers, vol. 9, no. 7, pp. 706-715, 2010. |

[64] | B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, San Francisco, Calif, USA, 1982. · Zbl 0504.28001 |

[65] | F. A. Tobagi, R. W. Peebles, and E. G. Manning, “Modeling and measurement techniques in packet communication networks,” Proceedings of the IEEE, vol. 66, no. 11, pp. 1423-1447, 1978. · doi:10.1109/PROC.1978.11149 |

[66] | R. Jain and S. A. Routhier, “Packet trains-measurements and a new model for computer network traffic,” IEEE Journal on Selected Areas in Communications, vol. 4, no. 6, pp. 986-995, 1986. · doi:10.1109/JSAC.1986.1146410 |

[67] | H. Jiang and C. Dovrolis, “Why is the internet traffic bursty in short time scales?” in Proceedings of the International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’05), vol. 33, pp. 241-252, June 2005. · doi:10.1145/1071690.1064240 |

[68] | P. Nain, “Impact of bursty traffic on queues,” Statistical Inference for Stochastic Processes, vol. 5, no. 3, pp. 307-320, 2002. · Zbl 1018.60089 · doi:10.1023/A:1021232808938 |

[69] | M. Draief and J. Mairesse, “Services within a busy period of an M/M/1 queue and dyck paths,” Queueing Systems, vol. 49, no. 1, pp. 73-84, 2005. · Zbl 1058.60076 · doi:10.1007/s11134-004-5556-6 |

[70] | F. Németh, P. Barta, R. Szabó, and J. Bíró, “Network internal traffic characterization and end-to-end delay bound calculus for generalized processor sharing scheduling discipline,” Computer Networks, vol. 48, no. 6, pp. 910-940, 2005. · Zbl 1075.68561 · doi:10.1016/j.comnet.2004.11.022 |

[71] | C. Li and W. Zhao, “Stochastic performance analysis of non-feedforward networks,” Telecommunication Systems, vol. 43, no. 3-4, pp. 237-252, 2010. · doi:10.1007/s11235-009-9211-8 |

[72] | Y. Jiang, Q. Yin, Y. Liu, and S. Jiang, “Fundamental calculus on generalized stochastically bounded bursty traffic for communication networks,” Computer Networks, vol. 53, no. 12, pp. 2011-2021, 2009. · Zbl 1192.68041 · doi:10.1016/j.comnet.2009.03.004 |

[73] | S. Wang, D. Xuan, R. Bettati, and W. Zhao, “Toward statistical QoS guarantees in a differentiated services network,” Telecommunication Systems, vol. 43, no. 3-4, pp. 253-263, 2010. · doi:10.1007/s11235-009-9212-7 |

[74] | D. Starobinski and M. Sidi, “Stochastically bounded burstiness for communication networks,” IEEE Transactions on Information Theory, vol. 46, no. 1, pp. 206-212, 2000. · Zbl 0996.90016 · doi:10.1109/18.817518 |

[75] | R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, New York, NY, USA, 3rd edition, 2000. · Zbl 0494.26002 |

[76] | W. F. Trench, Introduction to Real Analysis, Pearson Education, 2003. · Zbl 1204.00023 |

[77] | W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Transactions on Networking, vol. 5, no. 1, pp. 71-86, 1997. · doi:10.1109/90.554723 |

[78] | C. Estan and G. Varghese, “New directions in traffic measurement and accounting: focusing on the elephants, ignoring the mice,” ACM Transactions on Computer Systems, vol. 21, no. 3, pp. 270-313, 2003. · doi:10.1145/859716.859719 |

[79] | A. Gravey, J. Boyer, K. Sevilla, and J. Mignault, “Resource allocation for worst case traffic in ATM networks,” Performance Evaluation, vol. 30, no. 1-2, pp. 19-43, 1997. · doi:10.1016/S0166-5316(96)00062-4 |

[80] | K. Tian and M. Li, “A reliable anomaly detector against low-rate DDOS attack,” International Journal of Electronics and Computers, vol. 1, no. 1, pp. 1-6, 2009. |

[81] | E. W. Knightly and N. B. Shroff, “Admission control for statistical QoS: theory and practice,” IEEE Network, vol. 13, no. 2, pp. 20-29, 1999. · doi:10.1109/65.768485 |

[82] | A. Raha, W. Zhao, S. Kamat, and W. Jia, “Admission control for hard real-time connections in ATM LANs,” IEE Proceedings, vol. 148, no. 4, pp. 1-12, 2001. · doi:10.1049/ip-com:20010300 |

[83] | X. Jia, W. Zhao, and J. Li, “An integrated routing and admission control mechanism for real-time multicast connections in ATM networks,” IEEE Transactions on Communications, vol. 49, no. 9, pp. 1515-1519, 2001. · Zbl 1011.94502 · doi:10.1109/26.950337 |

[84] | R. J. Adler, The Geometry of Random Fields, John Wiley & Sons, Chichester, UK, 1981, Wiley Series in Probability and Mathematical Statistic. · Zbl 0478.60059 |

[85] | P. Hall and R. Roy, “On the relationship between fractal dimension and fractal index for stationary stochastic processes,” The Annals of Applied Probability, vol. 4, no. 1, pp. 241-253, 1994. · Zbl 0798.60035 · doi:10.1214/aoap/1177005210 |

[86] | G. Chan, P. Hall, and D. S. Poskitt, “Periodogram-based estimators of fractal properties,” The Annals of Statistics, vol. 23, no. 5, pp. 1684-1711, 1995. · Zbl 0843.62090 · doi:10.1214/aos/1176324319 |

[87] | J. T. Kent and A. T. A. Wood, “Estimating the fractal dimension of a locally self-similar gaussian process by using increments,” Journal of the Royal Statistical Society Series B, vol. 59, no. 3, pp. 679-699, 1997. · Zbl 0889.62072 |

[88] | T. Gneiting and M. Schlather, “Stochastic models that separate fractal dimension and the hurst effect,” SIAM Review, vol. 46, no. 2, pp. 269-282, 2004. · Zbl 1062.60053 · doi:10.1137/S0036144501394387 |

[89] | S. C. Lim and M. Li, “A generalized Cauchy process and its application to relaxation phenomena,” Journal of Physics A, vol. 39, no. 12, pp. 2935-2951, 2006. · Zbl 1090.82013 · doi:10.1088/0305-4470/39/12/005 |

[90] | M. Li, W. Jia, and W. Zhao, “A whole correlation structure of asymptotically self-similar traffic in communication networks,” in Proceedings of the 1st International Conference on Web Information Systems Engineering (WISE ’00), pp. 461-466, Hong Kong, June 2000. · Zbl 1111.90017 · doi:10.1088/0305-4470/39/29/L02 |

[91] | R. F. Peltier and J. Levy-Vehel, “A new method for estimating the parameter of fractional Brownian motion,” Tech. Rep. RR 2696, INRIA, 1994. |

[92] | R. F. Peltier and J. Levy-Vehel, “Multifractional Brownian motion: definition and preliminaries results,” Tech. Rep. RR 2645, INRIA, 1995. |

[93] | A. Benassi, S. Jaffard, and D. Roux, “Elliptic gaussian random processes,” Revista Matematica Iberoamericana, vol. 13, no. 1, pp. 19-90, 1997. · Zbl 0880.60053 · doi:10.4171/RMI/217 |

[94] | M. Li, S. C. Lim, and W. Zhao, “Investigating multi-fractality of network traffic using local Hurst function,” Advanced Studies in Theoretical Physics, vol. 2, no. 10, pp. 479-490, 2008. |

[95] | S. V. Muniandy, S. C. Lim, and R. Murugan, “Inhomogeneous scaling behaviors in Malaysian foreign currency exchange rates,” Physica A, vol. 301, no. 1-4, pp. 407-428, 2001. · Zbl 0986.91042 · doi:10.1016/S0378-4371(01)00387-9 |

[96] | M. Scalia, G. Mattioli, and C. Cattani, “Analysis of large-amplitude pulses in short time intervals: application to neuron interactions,” Mathematical Problems in Engineering, vol. 2010, Article ID 895785, 2010. · Zbl 1189.37099 · doi:10.1155/2010/895785 |

[97] | C. Cattani, “Fractals and hidden symmetries in DNA,” Mathematical Problems in Engineering, vol. 2010, Article ID 507056, 2010. · Zbl 1189.92015 · doi:10.1155/2010/507056 |

[98] | C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207-217, 2010. · doi:10.1007/s11235-009-9208-3 |

[99] | E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 2010. · Zbl 1191.35219 · doi:10.1155/2010/428903 |

[100] | E. G. Bakhoum and C. Toma, “Mathematical transform of traveling-wave equations and phase aspects of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID 695208, 15 pages, 2010. · Zbl 1191.35220 · doi:10.1155/2010/695208 |

[101] | D. She and X. Yang, “A new adaptive local linear prediction method and its application in hydrological time series,” Mathematical Problems in Engineering, vol. 2010, Article ID 205438, 15 pages, 2010. · Zbl 1189.37089 · doi:10.1155/2010/205438 |

[102] | M. Humi, “Assessing local turbulence strength from a time series,” Mathematical Problems in Engineering, vol. 2010, Article ID 316841, 2010. · Zbl 1189.37088 · doi:10.1155/2010/316841 |

[103] | M. Dong, “A tutorial on nonlinear time-series data mining in engineering asset health and reliability prediction: concepts, models, and algorithms,” Mathematical Problems in Engineering, vol. 2010, Article ID 175936, 2010. · Zbl 1189.90047 · doi:10.1155/2010/175936 |

[104] | M. Li and J.-Y. Li, “On the predictability of long-range dependent series,” Mathematical Problems in Engineering, vol. 2010, Article ID 397454, 9 pages, 2010. · Zbl 1191.62160 · doi:10.1155/2010/397454 |

[105] | Z. Liu, “Chaotic time series analysis,” Mathematical Problems in Engineering, vol. 2010, Article ID 720190, 2010. · Zbl 1191.37046 · doi:10.1155/2010/720190 |

[106] | G. Toma, “Specific differential equations for generating pulse sequences,” Mathematical Problems in Engineering, vol. 2010, Article ID 324818, 11 pages, 2010. · Zbl 1191.37052 · doi:10.1155/2010/324818 |

[107] | O. M. Abuzeid, A. N. Al-Rabadi, and H. S. Alkhaldi, “Fractal geometry-based hypergeometric time series solution to the hereditary thermal creep model for the contact of rough surfaces using the Kelvin-Voigt medium,” Mathematical Problems in Engineering, vol. 2010, Article ID 652306, 22 pages, 2010. · Zbl 1425.74335 · doi:10.1155/2010/652306 |

[108] | M. Li, “Change trend of averaged Hurst parameter of traffic under DDOS flood attacks,” Computers and Security, vol. 25, no. 3, pp. 213-220, 2006. · doi:10.1016/j.cose.2005.11.007 |

[109] | C. Zhang, X. Bai, J. Teng, D. Xuan, and W. Jia, “Constructing low-connectivity and full-coverage three dimensional sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 7, pp. 984-993, 2010. · doi:10.1109/JSAC.2010.100903 |

[110] | M. Li, C. Cattani, and S.-Y. Chen, “Viewing sea level by a one-dimensional random function with long memory, accepted for publication,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 13 pages, 2011. · doi:10.1155/2011/654284 |

[111] | M. Li, “A class of negatively fractal-dimensional Gaussian random functions,” Mathematical Problems in Engineering, vol. 2011, Article ID 291028, 18 pages, 2011. · Zbl 1209.28015 · doi:10.1155/2011/291028 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.