Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. (English) Zbl 1210.74073

Summary: Based on the extended Stroh formalism combined with the technique of conformal mapping and the Laurent series expansion, Green’s functions for an infinite two-dimensional anisotropic magnetoelectroelastic medium containing an elliptical cavity are obtained. The exact electromagnetic boundary conditions on the cavity surface are adopted in this analysis. When the elliptic cavity degenerates into a slit crack, the explicit, closed-form expressions for the coupled fields and the intensity factors are also provided. When the piezomagnetic and electromagnetic constants vanish, our results reduce to existing solutions of the piezoelectric solids with an elliptical cavity, which shows that our results are correct and universal.


74F15 Electromagnetic effects in solid mechanics
Full Text: DOI


[1] Brebbia, C. A.; Telles, J. C.F.; Wrobel, L. C., Boundary Element Techniques (1984), Springer: Springer Berlin · Zbl 0556.73086
[2] Mura, T., Micromechanics of Defects in Solids (1987), Martinus Nijhoff: Martinus Nijhoff The Hague, Netherlands
[3] Eshelby, J. D., The determination of the elastic fields of an ellipsoidal inclusion, and related problems, Proc. R. Soc. London. A, 241, 376-396 (1957) · Zbl 0079.39606
[4] W.F. Deeg, The analysis of dislocation, crack, and inclusion problems in piezoelectric solids, Ph.D. dissertation, Stanford University, 1980; W.F. Deeg, The analysis of dislocation, crack, and inclusion problems in piezoelectric solids, Ph.D. dissertation, Stanford University, 1980
[5] Benveniste, Y., The determination of the elastic and electric fields in a piezoelectric inhomogeneity, J. Appl. Phys., 72, 3, 1086-1095 (1992)
[6] Wang, B., Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material, Int. J. Solids Struct., 29, 3, 293-308 (1992) · Zbl 0753.73071
[7] Chen, T., Green’s functions and non-uniform transformation problem in a piezoelectric medium, Mech. Res. Commun., 20, 3, 271-278 (1993) · Zbl 0773.73077
[8] Dunn, M. L., Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems, Int. J. Eng. Sci., 32, 1, 119-131 (1994) · Zbl 0798.73046
[9] Dunn, M. L.; Wienecke, H. A., Green’s functions for transversely isotropic piezoelectric solids, Int. J. Solids Struct., 33, 30, 4571-4581 (1996) · Zbl 0919.73293
[10] Ding, H. J.; Chen, B.; Liang, J., Fundamental solution for transversely isotropic piezoelectric media, Science in China (Series A), 39, 7, 766-775 (1996) · Zbl 0867.35106
[11] Wang, C. Y., Green’s functions and general formalism for 2D piezoelectricity, Appl. Math. Lett., 9, 4, 1-7 (1996) · Zbl 0864.73060
[12] Lee, J. S.; Jiang, L. Z., A boundary element formulation and 2D fundamental solution for piezoelectric media, Mech. Res. Commun., 21, 1, 47-54 (1994) · Zbl 0801.73063
[13] Ding, H. J.; Wang, G. Q.; Chen, W. Q., Fundamental solutions of plane piezoelectric media, Science in China (Series E), 27, 3, 224-228 (1997)
[14] Rajapakse, R. K.N. D., Plane strain/stress solutions for piezoelectric solids, Composite, Part 28B, 385-396 (1997)
[15] Liu, J. X.; Wang, B.; Du, S. Y., Line force, charge and dislocation in anisotropic piezoelectric materials with an elliptic hole or a crack, Mech. Res. Commun., 24, 4, 399-405 (1997) · Zbl 0889.73061
[16] Lu, P.; Williams, F. W., Green’s functions of piezoelectric materials with an elliptic hole or inclusion, Int. J. Solids Struct., 35, 7/8, 651-664 (1998) · Zbl 0916.73040
[17] Gao, C. F.; Fan, W. X., Green’s functions for generalized 2D problems in piezoelectric media with an elliptic hole, Mech. Res. Commun., 25, 6, 685-693 (1998) · Zbl 1122.74388
[18] Alshits, V. I.; Darinskii, A. N.; Lothe, J., On the existence of surface waves in half-anisotropic elastic media with piezoelectric and piezomagnetic properties, Wave Motion, 16, 265-283 (1992) · Zbl 0764.73022
[19] Huang, J. H.; Kuo, W. S., The analysis of piezoelectric/piezoelectric composite materials containing an ellipsoidal inclusion, J. Appl. Phys., 81, 3, 1378-1386 (1997)
[20] Huang, J. H.; Chiu, Y. H.; Liu, H. K., Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions, J. Appl. Phys., 83, 10, 5364-5370 (1998)
[21] Li, J. Y.; Dunn, M. L., Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior, J. Intell. Mater. Syst. Struct., 7, 404-416 (1998)
[22] Li, J. Y.; Dunn, M. L., Anisotropic coupled field inclusion and inhomogeneity problems, Philos. Mag., 77, 5, 1341-1350 (1998)
[23] Alshits, V. I.; Kirchner, H. O.K.; Ting, T. C.T., Angularly inhomogeneous piezoelectric piezomagnetic magnetoelectric anisotropic media, Philos. Mag. Lett., 71, 5, 285-288 (1995)
[24] Kirchner, H. O.K; Alshits, V. I., Elastically anisotropic angularly inhomogeneous media II. The Green’s function for piezoelectric piezomagnetic and magnetoelectric media, Philos. Mag., 74, 4, 861-885 (1996)
[25] Stroh, A. N., Dislocations and cracks in anisotropic elasticity, Philos. Mag., 7, 625-646 (1958) · Zbl 0080.23505
[26] Barnett, D. M.; Lothe, J., Dislocations and line charges in anisotropic piezoelectric insulators, Phys. State Solid (b), 67, 105-111 (1975)
[27] Ting, T. C.T., Anisotropic Elasticity: Theory and Application (1996), Oxford Science: Oxford Science New York · Zbl 0871.73029
[28] Stagni, L., On the elastic field perturbation by inhomogeneities in plane elasticity, ZAMP, 33, 313-325 (1982) · Zbl 0485.73015
[29] Dunn, M. L., The effect of crack face boundary conditions on the fracture mechanics and its applications, Eng. Fract. Mech., 48, 1, 25-39 (1994)
[30] Zhang, T. Y.; Tong, P., Fracture mechanics for a mode crack in a piezoelectric material, Int. J. Solids Struct., 33, 3, 343-359 (1996) · Zbl 0919.73225
[31] Sosa, H. A.; Khutoryansky, N., New developments concerning piezoelectric materials with defects, Int. J. Solids Struct., 33, 23, 3399-3414 (1996) · Zbl 0924.73198
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.