×

zbMATH — the first resource for mathematics

A high accuracy Leray-deconvolution model of turbulence and its limiting behavior. (English) Zbl 1210.76084

MSC:
76F02 Fundamentals of turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. A. Adams and S. Stolz, Modern Simulation Strategies for Turbulent Flow, ed. B. Geurts (R. T. Edwards, Inc., 2001) pp. 21–41.
[2] DOI: 10.1006/jcph.2002.7034 · Zbl 1139.76319
[3] Berselli L. C., Mathematics of Large Eddy Simulation of Turbulent Flows (2005)
[4] DOI: 10.1887/0750304359
[5] Chepyzhov V. V., Discrete Contin. Dyn. Syst.
[6] DOI: 10.1098/rspa.2004.1373 · Zbl 1145.76386
[7] Childress S., Phys. D 158 pp 1–
[8] Constantin P., Phys. Rev. Lett. 69 pp 1648–
[9] Doering C., J. Fluid Mech. 467 pp 289–
[10] DOI: 10.1017/CBO9780511608803 · Zbl 0838.76016
[11] DOI: 10.1137/S0036141003436302 · Zbl 1128.76029
[12] Foias C., Phys. D 152 pp 505–
[13] DOI: 10.1017/CBO9780511546754
[14] Galdi G. P., Math. Models Methods Appl. Sci. 10 pp 343–
[15] DOI: 10.1063/1.865650 · Zbl 0647.76042
[16] DOI: 10.1063/1.1529180 · Zbl 1185.76144
[17] Geurts B. J., J. Turbulence 00 pp 1–
[18] Guermond J.-L., C. R. Acad. Sci. Paris Série I 7 pp 617–
[19] DOI: 10.1016/j.physd.2005.05.014 · Zbl 1078.35086
[20] DOI: 10.1088/0951-7715/19/4/006 · Zbl 1106.35050
[21] DOI: 10.1016/S0893-9659(03)90118-2 · Zbl 1039.76027
[22] Layton W., Discrete Contin. Dyn. Syst. Ser. B 6 pp 111–
[23] Layton W., J. Turbulence 7 pp 1–
[24] DOI: 10.1016/j.jmaa.2006.02.014 · Zbl 1167.76338
[25] Leray J., J. Math. Pures Appl. (9) 13 pp 331–
[26] DOI: 10.1007/BF02547354 · JFM 60.0726.05
[27] Lewandowski R., Analyse Mathématique et Océanographie (1997)
[28] DOI: 10.1007/s00021-005-0181-7 · Zbl 1099.76027
[29] Lewandowski R., Ann. Inst. H. Poincaré Anal. Non Linéare 4 pp 413–
[30] DOI: 10.1017/S0022112096008105 · Zbl 0891.76045
[31] DOI: 10.1017/CBO9780511840531 · Zbl 0966.76002
[32] DOI: 10.1007/BF01762360 · Zbl 0629.46031
[33] DOI: 10.1063/1.864731
[34] DOI: 10.1063/1.869575 · Zbl 1185.76674
[35] Stolz S., Phys. Fluids 10 pp 1699–
[36] DOI: 10.1063/1.1350896 · Zbl 1184.76530
[37] DOI: 10.1063/1.1397277 · Zbl 1184.76531
[38] Stolz S., Advances in LES of Complex Flows (2002)
[39] Temam R., Navier–Stokes Equations: Theory and Numerical Analysis (1984)
[40] Titi E. S., Russian Math. Dokladi 71 pp 91–
[41] DOI: 10.1016/S0167-2789(96)00161-3 · Zbl 0897.76019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.