## Ranking fuzzy numbers by distance minimization.(English)Zbl 1211.03069

Summary: We proposed a defuzzification using minimizer of the distance between the two fuzzy numbers. Then, we obtain the nearest point with respect to a fuzzy numbers and by considering the nearest point, we can present a ranking method for the fuzzy numbers. Also we give two new properties for ordering. Theorems and remarks are proposed for existence and uniqueness of the nearest point. The method is illustrated by numerical examples and compared with other methods.

### MSC:

 3e+72 Theory of fuzzy sets, etc.

### Keywords:

defuzzification; fuzzy number; ranking; distance minimization
Full Text:

### References:

 [1] Abbasbandy, S.; Asady, B., Ranking of fuzzy numbers by sign distance, Inform. Sciences, 176, 2405-2416 (2006) · Zbl 1293.62008 [2] Bortolan, G.; Degani, R., A review of some methods for ranking fuzzy numbers, Fuzzy Sets Syst., 15, 1-19 (1985) · Zbl 0567.90056 [3] Dubois, D.; Prade, H., Operations on fuzzy numbers, Int. J. Syst. Sci., 9, 626-631 (1978) · Zbl 0383.94045 [4] Dubois, D.; Prade, H., Fuzzy Sets and Systems: Theory and Application (1980), Academic Press: Academic Press New York · Zbl 0444.94049 [5] Jain, R., Decision-making in the presence of fuzzy variabl, IEEE Trans. Syst. Man Cybernet, 6, 698-703 (1976) · Zbl 0337.90005 [6] Jain, R., A procedure for multi-aspect decision making using fuzzy sets, Int. J. Syst. Sci., 8, 1-7 (1978) · Zbl 0347.90001 [7] Huijun, S.; Jianjun, W., A new approach for ranking fuzzy numbers based on fuzzy simulation analysis method, Appl. Math. Comput., 174, 755-767 (2006) · Zbl 1089.65008 [8] Wang, Y. M.; Yang, J. B.; Xu, D. L.; chin, K. S., On the centroids of fuzzy numbers, Fuzzy Sets Syst., 157, 919-926 (2006) · Zbl 1099.91035 [9] Abbasbandy, S.; Asady, B., The nearest trapezoidal fuzzy number of a fuzzy quantity, Appl. Math. Comput., 156, 381-386 (2004) · Zbl 1058.03516 [10] Abbasbandy, S.; Asady, B., A note on “A new approach for defuzzification”, Fuzzy Sets Syst., 128, 131-132 (2002) · Zbl 1031.93115 [11] Dubois, D.; Prade, H., The mean value of a fuzzy number, Fuzzy Sets Syst., 24, 279-300 (1987) · Zbl 0634.94026 [12] Grzegorzewski, P., Nearst interval approximation of a fuzzy number, Fuzzy Sets Syst., 130, 321-330 (2002) · Zbl 1011.03504 [13] Grzegorzewski, P.; Mrwka, E., Trapezoidal approximation of fuzzy numbers, Fuzzy Sets Syst., 153, 115-135 (2005) · Zbl 1067.03508 [14] Ma, Ming; Kandel, A.; Friedman, M., Correction to “A New approach for defuzzification”, Fuzzy Sets Syst., 128, 133-134 (2002) [15] Ma, Ming; Kandel, A.; Friedman, M., A new approach for defuzzification, Fuzzy Sets Syst., 111, 351-356 (2000) · Zbl 0968.93046 [16] Heilpern, S., Representation and application of fuzzy numbers, Fuzzy Sets Syst., 91, 259-268 (1997) · Zbl 0920.04011 [17] Yao, J.; Wu, K., Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets Syst., 116, 275-288 (2000) · Zbl 1179.62031 [18] Ibanez, L. Miguel. Campos.; Munoz, A. Gonzalez., A subjective approach for ranking fuzzy numbers, Fuzzy Sets Syst., 29, 145-153 (1989) · Zbl 0672.90001 [19] Goetschel, R.; Voxman, W., Elementary calculus, Fuzzy Sets Syst., 18, 31-43 (1986) · Zbl 0626.26014 [20] Diamond, P.; Kloeden, P., Metric spaces of fuzzy setes, Fuzzy Sets Syst., 35, 241-249 (1990) · Zbl 0704.54006 [21] Heilpern, S., The expected value of a fuzzy number, Fuzzy Sets Syst., 47, 81-86 (1992) · Zbl 0755.60004 [22] Wang, X.; Kerre, E. E., Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets Syst., 118, 375-385 (2001) · Zbl 0971.03054 [23] Baldwin, J. F.; Guild, N. C.F., Comparison of fuzzy numbers on the same decision space, Fuzzy Sets Syst., 2, 213-233 (1979) · Zbl 0422.90004 [24] Chen, S., Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets Syst., 17, 113-129 (1985) · Zbl 0618.90047 [25] Choobineh, F.; Li, H., An index for ordering fuzzy numbers, Fuzzy Sets Syst., 54, 287-294 (1993) [26] Chu, T.; Tsao, C., Ranking fuzzy numbers with an area between the centroid point and original point, Comput. Math. Appl., 43, 11-117 (2002) · Zbl 1113.62307 [27] Yager, R. R., A procedure for ordering fuzzy subsets of the unit interval, Inform. Sciences, 24, 143-161 (1981) · Zbl 0459.04004 [28] Cheng, C. H., A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets Syst., 95, 307-317 (1998) · Zbl 0929.91009 [29] Grzegorzewski, P., Metrics and orders in space of fuzzy numbers, Fuzzy Sets Syst., 97, 83-94 (1998) · Zbl 0930.03073 [30] Wang, X.; Kerre, E. E., Reasonable properties for the ordering of fuzzy quantities (II), Fuzzy Sets Syst., 118, 387-405 (2001) · Zbl 0971.03055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.