zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy hypervector spaces. (English) Zbl 1211.15002
Summary: The aim of this paper is the generalization of the notion of fuzzy vector spaces to fuzzy hypervector spaces. In this regard, by considering the notion of fuzzy hypervector spaces, we characterize a fuzzy hypervector space based on its level sub-hyperspaces. The algebraic nature of fuzzy hypervector spaces under transformations is studied. Certain conditions are obtained under which a given fuzzy hypervector space can or cannot be realized as a union of two fuzzy hypervector spaces such that none is contained in the other. The construction of a fuzzy hypervector space generated by a given fuzzy subset of a hypervector space is given. The set of all fuzzy cosets of a fuzzy hypervector space is shown to be a hypervector space. Finally, a fuzzy quotient hypervector space is defined and an analogue of a consequence of the “fundamental theorem of homomorphisms” is obtained.

MSC:
15A03Vector spaces, linear dependence, rank
WorldCat.org
Full Text: DOI
References:
[1] F. Marty, “Sur une generalization de la notion de groupe,” in Proceedings of the 8th Congress des Mathematiciens Scandinaves, pp. 45-49, Stockholm, Sweden, 1934. · Zbl 61.1014.03
[2] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editor, Udine, Italy, 2nd edition, 1993. · Zbl 0785.20032
[3] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003. · Zbl 1027.20051
[4] T. Vougiuklis, Hyperstructures and Their Representations, Hadronic Press, Palm Harbor, Fla, USA, 1994.
[5] M. S. Tallini, “Hypervector spaces,” in Proceeding of the 4th International Congress in Algebraic Hyperstructures and Applications, pp. 167-174, Xanthi, Greece, 1990. · Zbl 0801.20057
[6] M. S. Tallini, “Weak hypervector spaces and norms in such spaces,” in Algebraic Hyperstructures and Applications, pp. 199-206, Hadronic Press, Palm Harbor, Fla, USA, 1994. · Zbl 0840.15001
[7] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[8] A. Rosenfeld, “Fuzzy groups,” Journal of Mathematical Analysis and Applications, vol. 35, no. 3, pp. 512-517, 1971. · Zbl 0194.05501 · doi:10.1016/0022-247X(71)90199-5
[9] S. Nanda, “Fuzzy linear spaces over valued fields,” Fuzzy Sets and Systems, vol. 42, no. 3, pp. 351-354, 1991. · Zbl 0738.15003 · doi:10.1016/0165-0114(91)90113-5
[10] A. K. Katsaras and D. B. Liu, “Fuzzy vector spaces and fuzzy topological vector spaces,” Journal of Mathematical Analysis and Applications, vol. 58, no. 1, pp. 135-146, 1977. · Zbl 0358.46011 · doi:10.1016/0022-247X(77)90233-5
[11] R. Ameri, “Fuzzy hypervector spaces over valued fields,” Iranian Journal of Fuzzy Systems, vol. 2, no. 1, pp. 37-47, 2005. · Zbl 1112.15001
[12] R. Ameri, “Fuzzy (Co-)norm hypervector spaces,” in Proceeding of the 8th International Congress in Algebraic Hyperstructures and Applications, pp. 71-79, Samotraki, Greece, September 2002. · Zbl 1036.15001
[13] R. Ameri and M. M. Zahedi, “Hypergroup and join spaces induced by a fuzzy subset,” Pure Mathematics and Applications, vol. 8, pp. 155-168, 1997. · Zbl 0905.20050
[14] R. Ameri and M. M. Zahedi, “Fuzzy subhypermodules over fuzzy hyperrings,” in Proceedings of the 6th International Congress in Algebraic Hyperstructures and Applications, pp. 1-14, Democritus University, Prague, Czech Republic, September 1996. · Zbl 0883.16037
[15] P. Corsini and V. Leoreanu, “Fuzzy sets and join spaces associated with rough sets,” Rendiconti del Circolo Matematico di Palermo, vol. 51, no. 3, pp. 527-536, 2002. · Zbl 1176.03035 · doi:10.1007/BF02871859
[16] P. Corsini and I. Tofan, “On fuzzy hypergroups,” Pure Mathematics and Applications, vol. 8, no. 1, pp. 29-37, 1997. · Zbl 0906.20049
[17] B. Davvaz, “Fuzzy Hv-submodules,” Fuzzy Sets and Systems, vol. 117, no. 3, pp. 477-484, 2001. · Zbl 0974.16041 · doi:10.1016/S0165-0114(98)00366-2
[18] B. Davvaz, “Fuzzy Hv-groups,” Fuzzy Sets and Systems, vol. 101, no. 1, pp. 191-195, 1999. · Zbl 0935.20065 · doi:10.1016/S0165-0114(97)00071-7
[19] R. Ameri and O. R. Dehghan, “On dimension of hypervector spaces,” to appear in European Journal in Mathematics. · Zbl 1157.15033