zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Entropy analysis of integer and fractional dynamical systems. (English) Zbl 1211.37057
Several entropy definitions and types of particle dynamics are studied, to distinguish among integer and fractional behaviour.

37F10Polynomials; rational maps; entire and meromorphic functions
Full Text: DOI
[1] Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974) · Zbl 0292.26011
[2] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993) · Zbl 0818.26003
[3] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
[4] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution. Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1998) · Zbl 0922.45001
[5] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[6] Oustaloup, A.: La Commande CRONE: Commande Robuste D’ordre non Entier. Hermes, Oslo (1991)
[7] Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69--79 (1994) · doi:10.1007/BF00206239
[8] Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461--1477 (1996) · Zbl 1080.26505 · doi:10.1016/0960-0779(95)00125-5
[9] Machado, J.T.: Analysis and design of fractional-order digital control systems. J. Syst. Anal., Model. Simul. 27, 107--122 (1997) · Zbl 0875.93154
[10] Nigmatullin, R.: The statistics of the fractional moments: Is there any chance to ”read quantitatively” any randomness? Signal Process. 86(10), 2529--2547 (2006) · Zbl 1172.62303 · doi:10.1016/j.sigpro.2006.02.003
[11] Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885--898 (2006) · Zbl 1106.35103 · doi:10.1016/j.cnsns.2006.03.005
[12] Baleanu, D.: About fractional quantization and fractional variational principles. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2520--2523 (2009) · doi:10.1016/j.cnsns.2008.10.002
[13] Podlubny, I.: Fractional-order systems and PI {$\lambda$} D {$\mu$} -controllers. IEEE Trans. Autom. Control 44(1), 208--213 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[14] Tenreiro Machado, J.: Discrete-time fractional-order controllers. J. Fract. Calc. Appl. Anal. 4, 47--66 (2001) · Zbl 1111.93307
[15] Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(3), 363--367 (2002) · doi:10.1109/81.989172
[16] Tseng, C.C.: Design of fractional order digital fir differentiators. IEEE Signal Process. Lett. 8(3), 77--79 (2001) · doi:10.1109/97.905945
[17] Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5), 349--362 (2003) · Zbl 1051.93031 · doi:10.1016/j.jfranklin.2003.08.001
[18] Tenreiro Machado, J., Galhano, A.M.S.: Statistical fractional dynamics. ASME J. Comput. Nonlinear Dyn. 3(2), 021201 (2008)
[19] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379--423 (1948) · Zbl 1154.94303
[20] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623--656 (1948) · Zbl 1154.94303
[21] Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[22] Khinchin, A.I.: Mathematical Foundations of Information Theory. Dover, New York (1957) · Zbl 0088.10404
[23] Plastino, A., Plastino, A.R.: Tsallis entropy and Jaynes’ information theory formalism. Braz. J. Phys. 29(1), 50--60 (1999) · doi:10.1590/S0103-97331999000100005
[24] Li, X., Essex, C., Davison, M., Hoffmann, K.H., Schulzky, C.: Fractional diffusion, irreversibility and entropy. J. Non-Equilib. Thermodyn. 28(3), 279--291 (2003) · doi:10.1515/JNETDY.2003.017
[25] Haubold, H.J., Mathai, A.M., Saxena, R.K.: Boltzmann--Gibbs entropy versus Tsallis entropy: recent contributions to resolving the argument of Einstein concerning ”Neither Herr Boltzmann nor Herr Planck has given a definition of W”? Astrophys. Space Sci. 290(3--4), 241--245 (2004) · Zbl 1115.82300 · doi:10.1023/B:ASTR.0000032616.18776.4b
[26] Mathai, A.M., Haubold, H.J.: Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy. Phys. A, Stat. Mech. Appl. 375(1), 110--122 (2007) · doi:10.1016/j.physa.2006.09.002
[27] Carter, T.: An introduction to information theory and entropy. Complex Systems Summer School, Santa Fe (June 2007)
[28] Rathie, P., Da Silva, S.: Shannon, Levy, and Tsallis: a note. Appl. Math. Sci. 2(28), 1359--1363 (2008)
[29] Beck, C.: Generalised information and entropy measures in physics. Contemp. Phys. 50(4), 495--510 (2009) · doi:10.1080/00107510902823517
[30] Gray, R.M.: Entropy and Information Theory. Springer, Berlin (2009)
[31] Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376--378 (1993) · doi:10.1049/el:19930253
[32] Ubriaco, M.R.: Entropies based on fractional calculus. Phys. Lett. A 373(30), 2516--2519 (2009) · Zbl 1231.82024 · doi:10.1016/j.physleta.2009.05.026
[33] Tenreiro Machado, J., Galhano, A.M.: Statistical fractional dynamics. ASME J. Comput. Nonlinear Dyn. 3(2), 021201 (2008)