zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. (English) Zbl 1211.39002
Summary: We consider a discrete fractional boundary value problem of the form - $\Delta^{\nu} y(t)=f(t+\nu - 1,y(t+\nu - 1)), y(\nu - 2)=g(y), y(\nu +b)=0$, where $f:[\nu-1,\dots,\nu+b-1]_{\bbfN_{\nu-2}}$ is continuous, $g:\cal C([\nu-2,\nu+b]_{\bbfN_{\nu-2}},\bbfR)$ is a given functional, and $1<\nu \leq 2$. We give a representation for the solution to this problem. Finally, we prove the existence and uniqueness of solution to this problem by using a variety of tools from nonlinear functional analysis including the contraction mapping theorem, the Brouwer theorem, and the Krasnosel’skii theorem.

39A10Additive difference equations
26A33Fractional derivatives and integrals (real functions)
39A12Discrete version of topics in analysis
Full Text: DOI
[1] Bai, Z.; Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation, J. math. Anal. appl. 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[2] Benchohra, M.; Hamani, S.; Ntouyas, S. K.: Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear anal. TMA 71, 2391-2396 (2009) · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073
[3] Diethelm, K.; Ford, N.: Analysis of fractional differential equations, J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[4] Xu, X.; Jiang, D.; Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear anal. TMA 71, 4676-4688 (2009) · Zbl 1178.34006 · doi:10.1016/j.na.2009.03.030
[5] Atici, F. M.; Eloe, P. W.: Two-point boundary value problems for finite fractional difference equations, J. difference equ. Appl. (2010)
[6] C.S. Goodrich, Solutions to a discrete right-focal fractional boundary value problem, Int. J. Difference Equations 5 (2010) (in press).
[7] Atici, F. M.; Eloe, P. W.: Initial value problems in discrete fractional calculus, Proc. amer. Math. soc. 137, No. 3, 981-989 (2009) · Zbl 1166.39005 · doi:10.1090/S0002-9939-08-09626-3
[8] Goodrich, C. S.: Continuity of solutions to discrete fractional initial value problems, Comput. math. Appl. 59, 3489-3499 (2010) · Zbl 1197.39002 · doi:10.1016/j.camwa.2010.03.040
[9] Atici, F. M.; Eloe, P. W.: Fractional q-calculus on a time scale, J. nonlinear math. Phys. 14, No. 3, 333-344 (2007) · Zbl 1157.81315
[10] Atici, F. M.; Eloe, P. W.: A transform method in discrete fractional calculus, Int. J. Difference equ. 2, No. 2, 165-176 (2007)
[11] Atici, F. M.; Şengül, S.: Modeling with fractional difference equations, J. math. Anal. appl. (2010) · Zbl 1204.39004 · doi:10.1016/j.jmaa.2010.02.009
[12] Avery, R. I.; Henderson, J.: Twin solutions of boundary value problems for ordinary differential equations and finite difference equations, Comput. math. Appl. 42, 695-704 (2001) · Zbl 1006.34022 · doi:10.1016/S0898-1221(01)00188-2
[13] Cheung, W.; Ren, J.; Wong, P. J. Y.; Zhao, D.: Multiple positive solutions for discrete nonlocal boundary value problems, J. math. Anal. appl. 330, 900-915 (2007) · Zbl 1120.39016 · doi:10.1016/j.jmaa.2006.08.034
[14] Rodriguez, J.; Taylor, P.: Weakly nonlinear discrete multipoint boundary value problems, J. math. Anal. appl. 329, 77-91 (2007) · Zbl 1159.39009 · doi:10.1016/j.jmaa.2006.06.024
[15] Agarwal, R.; Meehan, M.; O’regan, D.: Fixed point theory and applications, (2001) · Zbl 0960.54027