zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Local Hardy-Littlewood maximal operator. (English) Zbl 1211.42017
Authors’ abstract: In this article, we define and investigate a local Hardy-Littlewood maximal operator in Euclidean spaces. It is proved that this operator satisfies weighted $L ^{p }, p > 1$, and weighted weak type (1,1) estimates with weight function ${w \in A^p_{\text{loc}}}$, the class of local $A _{p }$ weights which is larger than the Muckenhoupt $A _{p }$ class. Also, the condition ${w \in A^p_{\text{loc}}}$ turns out to be necessary for the weighted weak type $(p,p), p \geq 1$, inequality to hold.

MSC:
42B25Maximal functions, Littlewood-Paley theory
WorldCat.org
Full Text: DOI
References:
[1] Andersen K.F., Muckenhoupt B.: Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions. Studia Math. 72, 9--26 (1982) · Zbl 0501.47011
[2] Buckley S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340, 253--272 (1993) · Zbl 0795.42011 · doi:10.2307/2154555
[3] Cordoba A., Fefferman R.: A geometric proof of the strong maximal theorem. Ann. Math. 102, 95--100 (1975) · Zbl 0324.28004 · doi:10.2307/1970976
[4] Duoandikoetxea, J.: Fourier Analysis. Grad. Stud. Math. 29. Amer. Math. Soc., Providence (2001) · Zbl 0969.42001
[5] Duoandikoetxea J., Rubio de Francia J.L.: Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84, 541--561 (1986) · Zbl 0568.42012 · doi:10.1007/BF01388746
[6] Fefferman R.: Some weighted norm inequalities for Cordoba’s maximal function. Am. J. Math. 106, 1261--1264 (1984) · Zbl 0575.42022 · doi:10.2307/2374280
[7] Muckenhoupt, B.: Transplantation theorems and multiplier theorems for Jacobi series. Mem. Am. Math. Soc. 64, no. 356 (1986) · Zbl 0611.42020
[8] Nowak A., Stempak K.: Weighted estimates for the Hankel transform transplantation operator. Tohoku Math. J. 58, 277--301 (2006) · Zbl 1213.42100 · doi:10.2748/tmj/1156256405
[9] Stein E.M., Wainger S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239--1295 (1978) · Zbl 0393.42010 · doi:10.1090/S0002-9904-1978-14554-6