zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mappings on fuzzy soft classes. (English) Zbl 1211.54013
Summary: We define the concept of a mapping on classes of fuzzy soft sets, study the properties of fuzzy soft images and fuzzy soft inverse images of fuzzy soft sets, and support them with examples and counterexamples.

MSC:
54A40Fuzzy topology
WorldCat.org
Full Text: DOI
References:
[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965. · Zbl 0139.24606
[2] Z. Pawlak, “Rough sets,” International Journal of Computer and Information Sciences, vol. 11, pp. 341-356, 1982. · Zbl 0501.68053
[3] D. Molodtsov, “Soft set theory-first results,” Computers & Mathematics with Applications, vol. 37, no. 4-5, pp. 19-31, 1999. · Zbl 0936.03049
[4] D. V. Kovkov, V. M. Kolbanov, and D. A. Molodtsov, “Soft sets theory-based optimization,” Journal of Computer and Systems Sciences International, vol. 46, no. 6, pp. 872-880, 2007. · Zbl 1294.49009 · doi:10.1134/S1064230707060032
[5] P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft sets in a decision making problem,” Computers & Mathematics with Applications, vol. 44, no. 8-9, pp. 1077-1083, 2002. · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[6] Y. Zou and Z. Xiao, “Data analysis approaches of soft sets under incomplete information,” Knowledge-Based Systems, vol. 21, no. 8, pp. 941-945, 2008. · doi:10.1016/j.knosys.2008.04.004
[7] X. Yang, D. Yu, J. Yang, and C. Wu, “Generalization of soft set theory: from crisp to fuzzy case,” in Proceedings of the 2nd International Conference of Fuzzy Information and Engineering (ICFIE ’07), vol. 40 of Advances in Soft Computing, pp. 345-354, 2007. · Zbl 1127.03331 · doi:10.1007/978-3-540-71441-5_39
[8] P. K. Maji, R. Biswas, and A. R. Roy, “Fuzzy soft sets,” Journal of Fuzzy Mathematics, vol. 9, no. 3, pp. 589-602, 2001. · Zbl 0995.03040
[9] Z. Kong, L. Gao, and L. Wong, “Comment on “A fuzzy soft set theoretic approach to decision making problems”,” Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 542-540, 2009. · Zbl 1159.90421 · doi:10.1016/j.cam.2008.01.011
[10] A. R. Roy and P. K. Maji, “A fuzzy soft set theoretic approach to decision making problems,” Journal of Computational and Applied Mathematics, vol. 203, no. 2, pp. 412-418, 2007. · Zbl 1128.90536 · doi:10.1016/j.cam.2006.04.008
[11] A. Kharal and B. Ahmad, “Mappings on soft classes,” submitted. · Zbl 1236.68239