×

zbMATH — the first resource for mathematics

Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems. (English) Zbl 1211.65125
The authors study the space-time discontinuous Galerkin discretization applied separately in space and in time for the numerical solution of a nonstationary nonlinear convection-diffusion equation [cf. M. Feistauer, J. Hájek and K. Švadlenka, Appl. Math., Praha 52, No. 3, 197–233 (2007; Zbl 1164.65469)]. The main object of the paper is to derive error estimates of the space-time discontinuous Galerkin finite element method for the nonstationary initial-boundary value problem with nonlinear convection and linear diffusion. These estimates are optimal in time if the Dirichlet boundary conditions have behaviour in time as a polynomial of degree \(\leq q\). In general case these estimates become suboptimal.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations
Software:
RADAU
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akrivis G., Makridakis C.: Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: Math. Model. Numer. Anal. 38, 261–289 (2004) · Zbl 1085.65094
[2] Arnold D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982) · Zbl 0482.65060
[3] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuos Galerkin methods for elliptic problems. In: Cockburn, B., et al. (eds.) Discontinuous Galerkin Methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 89–101. Springer, Berlin (2000) · Zbl 0948.65127
[4] Arnold D.N., Brezzi F., Cockburn B., Marini D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001) · Zbl 1008.65080
[5] Babuška I., Baumann C.E., Oden J.T.: A discontinuous hp finite element method for diffusion problems, 1-D analysis. Comput. Math. Appl. 37, 103–122 (1999) · Zbl 0940.65076
[6] Baker G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977) · Zbl 0364.65085
[7] Baker G.A., Bramble J.H., Thomée V.: Single step Galerkin approximations for parabolic problems. Math. Comput. 31, 818–847 (1977) · Zbl 0378.65061
[8] Bassi F., Rebay S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997) · Zbl 0871.76040
[9] Bassi F., Rebay S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997) · Zbl 0902.76056
[10] Baumann C.E., Oden J.T.: A discontinuous hp finite element method for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 31, 79–95 (1999) · Zbl 0985.76048
[11] Castillo P., Cockburn B., Schötzau D., Schwab C.: Optimal a priori estimates for the hp-version of the local discontinuous Galerkin method for convection-difussion problems. Math. Comput. 71, 455–478 (2001) · Zbl 0997.65111
[12] Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1979)
[13] Cockburn B., Dong B., Guzmán J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46, 1250–1265 (2008) · Zbl 1168.65058
[14] Cockburn B., Gremaud P.-A.: A priori error estimates for numerical methods for scalar conservation laws. Part I: the general approach. Math. Comput. 65, 533–573 (1996) · Zbl 0848.65067
[15] Cockburn B., Gremaud P.-A.: A priori error estimates for numerical methods for scalar conservation laws. Part II: flux-splitting monotone schemes on irregular Cartesion grids. Math. Comput. 66, 547–572 (1997) · Zbl 0866.65061
[16] Cockburn B., Gremaud P.-A., Xiangrong Yang J.: A priori error estimates for numerical methods for scalar conservation laws. Part III: multidimensional flux-splitting monotone schemes on non-Cartesion grids. SIAM J. Numer. Anal. 35, 1775–1803 (1998) · Zbl 0909.65058
[17] Cockburn B., Shu C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II. General framework. Math. Comput. 52, 411–435 (1989) · Zbl 0662.65083
[18] Cockburn B., Shu C.-W.: The local discontinuous Gelerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998) · Zbl 0927.65118
[19] Cockburn B., Shu C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001) · Zbl 1065.76135
[20] Dawson C., Aizinger V.: A discontinuous Galerkin method for three-dimensional shallow water equations. J. Sci. Comput. 22–23, 245–267 (2005) · Zbl 1065.76136
[21] Dolejší V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 4, 231–274 (2008)
[22] Dolejší V., Feistauer M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems. Numer. Funct. Anal. Optim. 26, 2709–2733 (2005) · Zbl 1093.76034
[23] Dolejší V., Feistauer M.: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198, 727–746 (2004) · Zbl 1116.76386
[24] Dolejší V., Feistauer M., Hozman J.: Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech. Eng. 196, 2813–2827 (2007) · Zbl 1121.76033
[25] Dolejší V., Feistauer M., Kučera V.: On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers. Comput. Visual. Sci. 10, 17–27 (2007) · Zbl 05193029
[26] Dolejší V., Feistauer M., Schwab C.: A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems. Calcolo 39, 1–40 (2002) · Zbl 1098.65095
[27] Dolejší V., Feistauer M., Sobotíková V.: A discontinuous Galerkin method for nonlinear convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 194, 2709–2733 (2005) · Zbl 1093.76034
[28] Dolejší V., Vlasák M.: Analysis of a BDF-DGFE scheme for nonlinear convection-diffusion problems. Numer. Math. 110, 405–447 (2008) · Zbl 1158.65068
[29] Eriksson K., Estep D., Hansbo P., Johnson C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996) · Zbl 0946.65049
[30] Eriksson K., Johnson C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991) · Zbl 0732.65093
[31] Estep D., Larsson S.: The discontinuous Galerkin method for semilinear parabolic problems. Math. Model. Numer. Anal. 27, 35–54 (1993) · Zbl 0768.65065
[32] Feistauer, M.: Optimal error estimates in the DGFEM for nonlinear convection-diffusion problems. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications, ENUMATH 2007, pp. 323–330. Springer, Heidelberg (2008) · Zbl 1391.65168
[33] Feistauer M., Hájek J., Švadlenka K.: Space-time discontinuous Galerkin method for solving nonstationary linear convection-diffusion-reaction problems. Appl. Math. 52, 197–234 (2007) · Zbl 1164.65469
[34] Feistauer M., Kučera V.: On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224, 208–221 (2007) · Zbl 1114.76042
[35] Feistauer M., Švadlenka K.: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 2, 97–117 (2004) · Zbl 1059.65083
[36] Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Technical report 2001-42 (SFB 359). IWR Heidelberg · Zbl 1057.76033
[37] Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. Technical report 2002/45. University of Leicester, Department of Mathematics (2002). SIAM J. Numer. Anal. (to appear) · Zbl 1084.65115
[38] Hu C., Shu C.-W.: A discontinuos Galerkin finite element method for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 666–690 (1999) · Zbl 0946.65090
[39] Houston P., Schwab C., Süli E.: Discontinuous hp-finite element methods for advection-diffusion problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002) · Zbl 1015.65067
[40] Jaffre J., Johnson C., Szepessy A.: Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci. 5, 367–386 (1995) · Zbl 0834.65089
[41] Johnson C., Pitkäranta J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986) · Zbl 0618.65105
[42] Karakashian O., Makridakis C.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67, 479–499 (1998) · Zbl 0896.65068
[43] Kufner A., John O., Fučík S.: Function Spaces. Academia, Praha (1977)
[44] Le Saint P., Raviart P.-A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (eds) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, New York (1974)
[45] Oden J.T., Babuška I., Baumann C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998) · Zbl 0926.65109
[46] Ralston A.: A First Course in Numerical Analysis. McGraw-Hill, New York (1965) · Zbl 0139.31603
[47] Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479. Los Alamos Scientific Laboratory (1973)
[48] Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method applied to nonlinear parabolic equations. In: Cockburn, B., et al. (ed.) Discontinuous Galerkin Methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11, pp 231–244. Springer, Berlin (2000) · Zbl 0946.65078
[49] Roubíček T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005) · Zbl 1087.35002
[50] Schötzau, D.: hp-DGFEM for parabolic evolution problems. Applications to diffusion and viscous incompressible fluid flow. PhD Dissertation ETH No. 13041, Zürich (1999) · Zbl 0978.76053
[51] Schötzau D., Schwab C.: An hp a priori error analysis of the discontinuous Galerkin time-stepping method for initial value problems. Calcolo 37, 207–232 (2000) · Zbl 1012.65084
[52] Schötzau D., Schwab C., Toselli A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003) · Zbl 1055.76032
[53] Sun S., Wheeler M.F.: L 2(H 1)-norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems. J. Sci. Comput. 22–23, 501–530 (2005) · Zbl 1066.76037
[54] Thomée V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006) · Zbl 1105.65102
[55] Toselli A.: HP discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12, 1565–1597 (2002) · Zbl 1041.76045
[56] Van der Vegt J.J.W., Van der Ven H.: Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow. Part I: general formulation. J. Comput. Phys. 182, 546–585 (2002) · Zbl 1057.76553
[57] Wheeler M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978) · Zbl 0384.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.