×

zbMATH — the first resource for mathematics

On an invariance principle for unilateral contact at a bimaterial elastic interface. (English) Zbl 1211.74192
Summary: This paper examines the axisymmetric elastostatic problem related to the unilateral receding contact at a pre-compressed smooth bimaterial elastic interface. The separation at the interface is caused by the action of axisymmetric stress fields of unequal magnitude, which are applied at any location of the separate halfspace regions. The analysis of the problem focuses on the determination of the zone of separation as a function of the pre-compression, the magnitudes and locations of the axisymmetric stress fields inducing the separation, and the elasticity characteristics of the halfspace regions. It is found that the radius of the separation zone can be evaluated in explicit form. In the particular instance when the loadings applied at the surface of the halfspace regions are equal in magnitude and distribution, the analysis reveals that the radius of the separation zone is independent of the elasticity properties of the halfspace regions and can be evaluated in exact closed form.

MSC:
74R10 Brittle fracture
Software:
CONTACT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ()
[2] Barenblatt, G.I., The formation of equilibrium cracks during brittle fracture. general ideas and hypotheses. axially symmetric cracks, J. appl. math. mech. (PMM), 23, 622-636, (1959) · Zbl 0095.39202
[3] Barenblatt, G.I., The mathematical theory of equilibrium cracks in brittle fracture, (), 55-129
[4] D.M. Barnett, L.M. Keer, J.W. Rudnicki, T.C.T. Ting (Eds.), Special Topics in the Theory of Elasticity: A Volume in Honor of Professor John Dundurs. Int. J. Solids Struct. 32 (1995) 269-567 · Zbl 0863.00026
[5] Boussinesq, J., Applications des potentials a l’etude de l’equilibre et du mouvement des solides elastique, (1885), Gauthier-Villars Paris · JFM 18.0932.01
[6] P.G. Ciarlet, Mathematical Elasticity, Three-Dimensional Elasticity, vol. 1, North Holland, Amsterdam, 1988
[7] A. Curnier (Ed.), Proceedings of the International Symposium on Contact Mechanics, Presses Polytech. et Univ. Romandes, Lausanne, 1992
[8] ()
[9] Dundurs, J.; Stippes, M., The role of elastic constants on certain contact problems, J.appl. mech., 37, 965-970, (1970)
[10] Dundurs, J.; Comninou, M., An old elasticity problem in a unilateral setting, J. elasticity, 12, 231-238, (1982) · Zbl 0487.73125
[11] Dundurs, J.; Tsai, K.C.; Keer, L.M., Contact between elastic bodies with wavy surfaces, J. elasticity, 3, 109-115, (1973)
[12] Duvaut, G.; Lions, J.L., Inequalities in mechanics and physics, (1976), Springer-Verlag Berlin · Zbl 0331.35002
[13] G. Fichera, The Signorini elastostatic problems with ambiguous boundary conditions, Proceedings of the International Conference on the Application of the Theory of Functions in Continuum Mechanics, Tiblisi, vol. 1, 1963
[14] Fichera, G., Boundary value problems of elasticity with unilateral constraints, (), 391-424
[15] Fremond, M., Contact with adhesion, (), 157-185 · Zbl 0669.73079
[16] L.A. Galin, Contact Problems in the Classical Theory of Elasticity, in: I.N. Sneddon (Ed.), Engl. Trans., Tech. Rep. G16447, North Carolina State College, Raleigh, NC, 1961
[17] Gladwell, G.M.L., Contact problems in the classical theory of elasticity, (1980), Sijthoff and Noordhoff Alphen Aan den Rijn, The Netherlands · Zbl 0431.73094
[18] Gladwell, G.M.L.; Hara, T., The contact problem for a rigid obstacle pressed between two dissimilar halfspaces, Quart. J. mech. appl. math., 34, 251-263, (1981) · Zbl 0462.73093
[19] Gladwell, G.M.L., On contact problems for a medium with rigid flat inclusions of arbitrary shape, Int. J. solids struct., 32, 383-389, (1995) · Zbl 0865.73052
[20] Goodman, L.E., Developments of the three-dimensional theory of elasticity, (), 25-64
[21] Green, A.E.; Zerna, W., Theoretical elasticity, (1968), Clarendon Press Oxford · Zbl 0155.51801
[22] Gurtin, M.E., Linear theory of elasticity, () · Zbl 0123.40803
[23] Haslinger, J.; Janovsky, V., Contact problem with friction, (), 74-100 · Zbl 0615.73120
[24] Hertz, H., Uber die beruhrung fester elastischer korper, J. fur die reine und angew. Mathematik, 49, 156-171, (1882) · JFM 14.0807.01
[25] Hertz, H., Gesammelte werke, band 1, (1895), Johann Ambrosius Barth Leipzig
[26] Johnson, K.L., Contact mechanics, (1985), Cambridge University Press Cambridge · Zbl 0599.73108
[27] Johnson, K.L.; Greenwood, J.A.; Higginson, J.G., The contact of elastic regular wavy surfaces, Int. J. mech. sci., 27, 383-396, (1985) · Zbl 0576.73105
[28] Kalker, J.J., Three-dimensional elastic bodies in rolling contact, (1990), Kluwer Academic Publisher Dordrecht, The Netherlands · Zbl 0709.73068
[29] Kikuchi, N.; Oden, J.T., Contact problems in elasticity: A study of variational inequalities and finite element methods, (1988), SIAM Philadelphia · Zbl 0685.73002
[30] Kinderlehrer, D.; Stampaccia, G., An introduction to variational inequalities, and their applications, (1980), Academic Press New York
[31] Klabring, A., Mathematical programming in contact problems (chapter 7), (), 233-263
[32] Love, A.E.H., A treatise on the mathematical theory of elasticity, (1927), Cambridge University Press Cambridge · Zbl 0063.03651
[33] Love, A.E.H., Boussinesq’s problem for a rigid cone, Quart. J. math., 10, 161-175, (1939) · Zbl 0022.27304
[34] Lur’e, A.I., Three-dimensional problems in the theory of elasticity, (1965), Wiley-Interscience New York · Zbl 0202.56204
[35] Mindlin, R.D., A force at a point in the interior of a semi-infinite solid, Physics, 7, 195-202, (1936) · JFM 62.1531.03
[36] Mindlin, R.D.; Deresiewicz, H., Elastic spheres in contact under varying oblique forces, J. appl. mech., 75, 327-344, (1953) · Zbl 0051.41202
[37] ()
[38] Mura, T., Micromechanics of defects in solids, (1987), Martinus Nijhoff Publ Dordrecht, The Netherlands
[39] Panagiotopoulos, P.D., Inequality problems in mechanics and applications, (1985), Birkhauser Verlag Basel · Zbl 0579.73014
[40] W. Prager, Unilateral constraints in mechanics of continua. Atti del Convegno Lagrangiano, Acc. Sci. Torino, 1963, pp. 181-191
[41] Selvadurai, A.P.S., Elastic analysis of soil-foundation interaction, developments in geotechnical engineering, vol. 17, (1979), Elsevier Science Publishers Amsterdam · Zbl 0406.73016
[42] Selvadurai, A.P.S., Separation at a pre-fractured bi-material geological interface, Mech. res. comm., 21, 83-88, (1994) · Zbl 0795.73064
[43] Selvadurai, A.P.S., A unilateral contact problem for a rigid disc inclusion embedded between two dissimilar elastic halfspaces, Quart. J. mech. appl. math., 47, 493-510, (1994) · Zbl 0808.73066
[44] Selvadurai, A.P.S., ()
[45] Signorini, A., Sopra alcune questioni di elastostatica, Atti soc. ital. per il progresso delle scienze, 11, 143-148, (1933) · JFM 59.1413.02
[46] Sneddon, I.N., Fourier transforms, (1951), McGraw-Hill New York · Zbl 0099.28401
[47] Sneddon, I.N.; Lowengrub, M., Crack problems in the classical theory of elasticity, (1969), John Wiley New York · Zbl 0201.26702
[48] Truesdell, C., Invariant and complete stress functions for general continua, Arch. rational mech. anal., 4, 1-29, (1960) · Zbl 0089.40803
[49] Ia.S. Ufliand, Survey of Applications of Integral Transforms in the Theory of Elasticity, in: I.N. Sneddon (Ed.), Trans., Tech. Rep. 65-1556, North Carolina State College, Raleigh, NC, 1965
[50] Villaggio, P., A unilateral contact problem in elasticity, J. elasticity, 10, 113-119, (1980) · Zbl 0425.73097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.