zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Starting solutions for some unsteady unidirectional flows of a second grade fluid. (English) Zbl 1211.76032
Summary: Exact solutions corresponding to the motions of a second grade fluid, due to the cosine and sine oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined by means of the Fourier sine transforms. These solutions, presented as sum of the steady-state and transient solutions, satisfy both the governing equations and all associate initial and boundary conditions. In the special case when $\alpha _{1} \rightarrow 0$, they reduce to those for a Navier-Stokes fluid.

76D05Navier-Stokes equations (fluid dynamics)
76A05Non-Newtonian fluids
Full Text: DOI
[1] Schlichting, H.: Boundary layer theory. (1968) · Zbl 0096.20105
[2] Tokuda, N.: On the impulsive motion of a flat plate in a viscous fluid. J. fluid mech. 33, 657-672 (1968) · Zbl 0167.55203
[3] Penton, R.: The transient for Stokes’s oscillating plane: a solution in terms of tabulated functions. J. fluid mech. 31, 819-825 (1968) · Zbl 0193.56302
[4] Rajagopal, K. R.: A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Non-linear mech. 17, No. 5-6, 369-373 (1982) · Zbl 0527.76003
[5] Hayat, T.; Asghar, S.; Siddiqui, A. M.: Periodic unsteady flows of a non-Newtonian fluid. Acta mech. 131, 169-175 (1998) · Zbl 0939.76002
[6] Siddiqui, A. M.; Hayat, T.; Asghar, S.: Periodic flows of a non-Newtonian fluid between two parallel plates. Int. J. Non-linear mech. 34, 895-899 (1999) · Zbl 1006.76004
[7] Hayat, T.; Asghar, S.; Siddiqui, A. M.: Some unsteady unidirectional flows of non-Newtonian fluid. Int. J. Eng. sci. 38, 337-346 (2000) · Zbl 1210.76015
[8] Rajagopal, K. R.: Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid. Acta mech. 49, 281-285 (1983) · Zbl 0539.76005
[9] Rajagopal, K. R.; Bhatnagar, R. K.: Exact solutions for some simple flows of an Oldroyd-B fluid. Acta mech. 113, 233-239 (1995) · Zbl 0858.76010
[10] Erdogan, M. E.: A note on an unsteady flow of a viscous fluid due to an oscillating plane wall. Int. J. Non-linear mech. 35, 1-6 (2000) · Zbl 1006.76028
[11] Fosdick, R. L.; Rajagopal, K. R.: Anomalous features in the model of second-order fluid. Arch. rational mech. Anal. 70, 145-152 (1979) · Zbl 0427.76006
[12] Asghar, S.; Hayat, T.; Siddiqui, A. M.: Moving boundary in a non-Newtonian fluid. Int. J. Non-linear mech. 37, 75-80 (2002) · Zbl 1116.76310
[13] Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Eng. sci. 33, No. 5, 689-729 (1995) · Zbl 0899.76062
[14] Bandelli, R.; Rajagopal, K. R.; Galdi, G. P.: On some unsteady motions of fluids of second grade. Arch. mech. 47, No. 4, 661-676 (1995) · Zbl 0835.76002
[15] R. Bandelli, Unsteady flows of non-Newtonian fluids, Ph.D. Dissertation, University of Pittsburgh, 1995. · Zbl 0837.76004
[16] Hayat, T.; Hutter, K.: Rotating flow of a second order fluid on a porous plate. Int. J. Non-linear mech. 39, 767-777 (2004) · Zbl 05138488
[17] Rajagopal, K. R.: On boundary conditions for fluids of the differential type. Navier-Stokes equations and related non-linear problems, 273-278 (1995) · Zbl 0846.35107
[18] Hayat, T.; Wang, Y.; Hutter, K.: Hall effects on the unsteady hydromagnetic oscillatory flow of a second grade fluid. Int. J. Non-linear mech. 39, 1027-1037 (2004) · Zbl 05138510
[19] Sneddon, I. N.: Fourier transforms. (1951) · Zbl 0038.26801
[20] Sneddon, I. N.: Functional analysis. Encyclopedia of physics (1955)
[21] I.S. Grandshteyn, I.M. Ryzhik, in: Alan Jeffrey (Ed.), Tables of Integrals, Series and Products, fifth ed., Academic Press, San Diego, New York, Boston, London, Sydney, Toronto, 1994 (translated from Russian).