zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact flow of a third grade fluid past a porous plate using homotopy analysis method. (English) Zbl 1211.76076
Summary: The flow of a third grade fluid past a porous plate is considered. An exact analytical solution of the governing non-linear differential equation is constructed using homotopy analysis method. It is observed that the relevant perturbation solution corresponds to a special case of the presented solution.

MSC:
76M25Other numerical methods (fluid mechanics)
76S05Flows in porous media; filtration; seepage
76A05Non-Newtonian fluids
WorldCat.org
Full Text: DOI
References:
[1] Truesdal, C.; Noll, W.: The non-linear field theories of mechanics. Handbuch der physik /3 (1965)
[2] Rajagopal, K. R.; Na, T. Y.: On Stokes problem for a non-Newtonian fluid. Acta mech. 48, 233-239 (1983) · Zbl 0528.76003
[3] Erdogan, M. E.: Plane surface suddenly set in motion in a non-Newtonian fluid. Acta mech. 108, 179-187 (1995)
[4] Siddiqui, A. M.; Kaloni, P. N.: Plane steady flows of a third grade fluid. Int. J. Engng. sci. 25, 171-188 (1987) · Zbl 0615.76007
[5] Molloica, F.; Rajagopal, K. R.: Secondary flows due to axial shearing of third grade fluid between two eccentrically placed cylinders. Int. J. Engng. sci. 37, 411-429 (1999) · Zbl 1210.76017
[6] Hayat, T.; Nadeem, S.; Asghar, S.; Siddiqui, A. M.: MHD rotating flow of a third grade fluid on an oscillating porous plate. Acta mech. 152, 177-190 (2001) · Zbl 0993.76091
[7] S.J. Liao, A kind of linearity-invariance under homotopy and some simple applications of it in mechanics. Report No. 520, Institute of Shipbuilding, University of Hamburg, 1992
[8] Liao, S. J.: Application of process analysis method in solution of 2D non-linear progressive gravity waves. J. ship res. 36, 30-37 (1992)
[9] Liao, S. J.: Higher-order stream function-vorticity formulation of 2D Navier--Stokes equations. Int. J. Numer. meth. Fluids 15, 595-612 (1992) · Zbl 0762.76063
[10] Liao, S. J.: A second-order approximate analytical solution of a simple pendulum by the process analysis method. J. appl. Mech. 59, 970-975 (1992) · Zbl 0769.70017
[11] Liao, S. J.: An approximate solution technique not depending on small parameters: A special example. Int. J. Non-linear mech. 30, 371-380 (1995) · Zbl 0837.76073
[12] Wang, Z. K.; Kao, T. A.: An introduction to homotopy methods. (1991)
[13] Duld, A.: Lectures on algebraic topology. (1972)
[14] Papy, G.: Topologie als grundlage des analysis-unterrichts. (1970)
[15] Nash, C.; Sen, S.: Topology and geometry for physicists. (1983) · Zbl 0529.53001
[16] Ortega, J. M.; Rheinboldt, W. C.: Iterative solution of non-linear equations in several variables. (1970) · Zbl 0241.65046
[17] Liao, S. J.: An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude. Int. J. Non-linear mech. 38, 1173-1183 (2003) · Zbl 05138214
[18] Liao, S. J.; Cheung, K. F.: Homotopy analysis of non-linear progressive waves in deep water. J. engng. Math. 45, 105-116 (2003) · Zbl 1112.76316
[19] Wang, C.; Zhu, J. M.; Liao, S. J.; Pop, I.: On the explicit analytic solution of cheng chang equation. Int. J. Heat mass transf. 46, 1855-1860 (2003) · Zbl 1029.76050
[20] Liao, S. J.; Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. fluid mech. 453, 411-425 (2002) · Zbl 1007.76014
[21] Liao, S. J.: An analytic approximation of the drag coefficient for the viscous flow past a sphere. Int. J. Non-linear mech. 37, 1-18 (2002) · Zbl 1116.76335
[22] Liao, S. J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Non-linear mech. 34, 759-778 (1999) · Zbl 05137896
[23] Liao, S. J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. fluid mech. 385, 101-128 (1999) · Zbl 0931.76017
[24] Liao, S. J.; Chwang, A. T.: Application of homotopy analysis method in non-linear oscillations. J. appl. Mech. 65, 914-992 (1998)
[25] Liao, S. J.: An approximate solution technique which does not depend upon small parameters (part II) an application in fluid mechanics. Int. J. Non-linear mech. 32, 815-822 (1997) · Zbl 1031.76542
[26] Rivlin, R. S.; Ericksen, J. L.: Stress deformation relations for isotropic materials. J. rat. Mech. anal. 4, 323-425 (1955) · Zbl 0064.42004
[27] Fosdick, R. L.; Rajagopal, K. R.: Thermodynamics and stability of fluids of third grade. Proc. R. Soc. lond. A 369, 351-377 (1980) · Zbl 0441.76002
[28] Dunn, J. E.; Fosdick, R. L.: Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. rat. Mech. anal. 56, 191-252 (1974) · Zbl 0324.76001